LONG MOVE

Übersicht

"Leistungsadaption und ortsbezogene Verhaltensregeln für eine nachhaltige IoT-Sensorik in der Gebäudeausstattung zur modularen Vernetzung von Einheiten"

HA-Projekt-Nr. 802/19-122

Beteiligte

Projektpartner

Laufzeit 09/2019 - 12/2021

Abstract: Die Projektmotivation ist der Trend zum drastischen Anstieg von Produktservice- und Betriebskosten resultierend aus dem immer breiter werdenden Einsatz funkgestützter Internet of Things (IoT)-Sensorik. Im Vergleich zu Kabellösungen sind die Installationen an Orten mit instabilem Betrieb oder periodische Batteriewechsel als Ursachen für höhere Kosten und ein nicht nachhaltiger Ressourcenverbrauch anzusehen. Mit LONG MOVE sollen sich Sensorikprodukte abhängig von ihren jeweiligen Bedingungen am Installationsort adaptiv verhalten. Insbesondere sollen Sensoren ihre Energieversorgung über lange Zeiträume wie 20 Jahre durch Energy Harvesting (z.B. durch Solarzellen) autark sicherstellen können. Durch Modellierung und Simulationen soll während der Produktentwicklung das dauerhafte Verhalten über solch lange Zeiträume vorhersagbar werden. Eine Datenbasis hierfür entsteht durch Messungen des Energieeintrags an unterschiedlichen Orten. Weiterhin sollen Energiekostenfunktionen im heterogenen Sensornetzwerk die Möglichkeit zur einer energieoptimierten Aufgabenverteilung erreichen.

Projektbeschreibung

Das Projekt „LONG MOVE – Leistungsadaption und ortsbezogene Verhaltensregeln für eine nachhaltige IoT-Sensorik in der Gebäudeausstattung zur modularen Vernetzung von Einheiten“ soll Möglichkeiten zur Modellierung und Simulation des Verhaltens von Sensorgeräten und deren energetisches Verhalten sowohl beim Energieeintrag als auch beim Energieverbrauch betrachten sowie Ansätze zur verteilten Optimierung des Kostenfaktors Energie im Netzwerk.

Dabei konzentriert sich ein Forschungsansatz auf das Verhalten des einzelnen Sensorgeräts, welcher oft auch als (Sensor-)Knoten bezeichnet wird. Verwendet werden dabei Methoden zur Modellierung des Verhaltens. Zur Betrachtung des Energieeintrags werden für das Projekt Lichtsensoren entwickelt, die während der Projektlaufzeit an unterschiedlichsten Standorten Daten sammeln, die über die Zeit den Messort in Form eines Verlaufs des Energieeintrags als Kurve repräsentieren. Unter Betrachtung einer realen Hardware sowie darauf laufender Software entsteht ein schrittweise verfeinertes Modell, welches das eines einzelnen Knotens und seines Verhaltens nachbildet. Um das Verhalten ändern zu können, werden aus der Simulation Profile abgeleitet, die sich auf der realen Hardware validieren lassen. Durch die Wahl eines Profils kann sich ein Knoten autark an seine Umwelt anpassen. Hierdurch entsteht ein Adaptionsverhalten eines Sensorknotens an die lokal verfügbare Umgebungsenergie, das auch auf sehr stark ressourcenbeschränkter Hardware einsetzbar ist.

Der zweite Forschungsansatz betrachtet eine Menge unterschiedlicher Knoten, die zu einem Netzwerk verbunden sind. Hierbei können Funktionen je nach Verfügbarkeit von für die Ausführung benötigter Energie unterschiedlichen Knoten zugeordnet werden. Die Art der Energiequelle kann dabei unterschiedlich bewertet werden bzw. als unterschiedlicher Kostenfaktor in die Entscheidung der Lokalisierung der Funktion eingehen. Hierzu wird das lokale Energiemodell erweitert in Form eines verteilten Energiemodells für alle Netzwerkteilnehmer. Insbesondere lassen sich auch Knoten, die permanent energieversorgt sind, z.B. durch einen Anschluss an das Stromnetz, gezielt einsetzen, um energieintensive Aufgaben im Netzwerk wahrzunehmen.

In der Gesamtheit beider Ansätze versucht das Projekt LONG MOVE zu erreichen, dass sich die entwickelten Ansätze und Methoden in einen Entwicklungsprozess für zukünftige Sensorikprodukte integrieren lassen. Dies soll zu einer nachhaltigen Methodik führen, IoT-Produkte nicht nur gezielt nach den zu erfüllenden Funktionen hin zu entwickeln. Stattdessen soll bereits der Entwurfs- und Entwicklungsprozess das energetische Verhalten als zentrale Produktanforderung zum Ziel haben. Übertragbare Ansätze sollen als Best Practises der Embedded-Entwicklung entstehen.

Das Projekt LONG MOVE zielt darauf ab, dass autarke Sensoren zur Aufnahme von Messwerten an nahezu beliebigen Standorten funkvernetzbar werden. Dies ist eine wesentliche Voraussetzung zur weiteren Digitalisierung in diversen Anwendungsbereichen. Das Projekt betrachtet dabei besonders neuartige Lösungen zur Assistenz älterer Menschen in der eigenen Mietwohnung, Automatisierungen in der Produktionstechnik als Industrial IoT (IIoT) sowie Anwendungen eines regionalen Versorgers.

Der Projektverbund besteht aus den Hochschulen Darmstadt und RheinMain sowie aus der Thermokon Sensortechnik GmbH. Unterstützend wirken die assoziierten Unternehmenspartner Entega AG, die Merck KGaA sowie die Vonovia SE an dem Projekt mit. Einsatzmöglichkeiten werden besonders befördert durch das Darmstädter IoT-Netzwerk als Projekt der Digitalstadt Darmstadt und der Vernetzung unterschiedlicher Anwendungsfelder in einem gemeinsamen Projektkonsortium.

Kontakt

Forschungsleiter
Prof. Dr. Jens-Peter Akelbein

: D19,3.07
+49.6151.16-38481
jens-peter.akelbein@h-da.de
Details zur Person

Gefördert durch

Dokumentation

Link zum Wiki