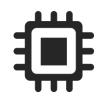
			1293
BPSE SS23: IMP	LEMENTING AND BE PAKEM PROTOCO	NCHMARKING THE	
PATRICKFENDER		YANNICKLECHLER	
YAHYA EL HADJAHMED	DAVID HAAS	RAFAEL CABRAL VOGT	
YAHYA EL HADJAHMED TOBIAS DEPUYDT-WIEDEMANN	DAVID HAAS GISANE GASPARAYAN-JUNG	RAFAEL CABRAL VOGT FELIX MAXIMILIEN EHONDJE NDOUMBE	
TOBIAS DEPUYDT-WIEDEMANN		FELIX MAXIMILIEN EHONDJE NDOUMBE	
TOBIAS DEPUYDT-WIEDEMANN	GISANE GASPARAYAN-JUNG	FELIX MAXIMILIEN EHONDJE NDOUMBE	
TOBIAS DEPUYDT-WIEDEMANN	GISANE GASPARAYAN-JUNG	FELIX MAXIMILIEN EHONDJE NDOUMBE	
TOBIAS DEPUYDT-WIEDEMANN	GISANE GASPARAYAN-JUNG	FELIX MAXIMILIEN EHONDJE NDOUMBE	


Agenda

Project and Goals

The PAKEM Protocol

Implementation

Benchmarks

Challenges / Future Work

Live Demo

Motivation & & Goals

• Quantum-resistant version of current eID and eMRTD protocols

 Currently used PACE (Password Authenticated Connection Establishment) is based on Diffie-Hellman

• Diffie-Hellman is not quantum-resistant!

> PQC KEM Kyber [BDK+18] to replace DH key agreement

Motivation & & Goals

Implementing PAKEM on NUCLEO STM32 board based on previous student projects

Integrate libOpenCM3 for STM32 boards

Integrating optimized CRYSTALS-Kyber-KEM PQM4 [KPR+]

> Implementing thorough performance benchmarks

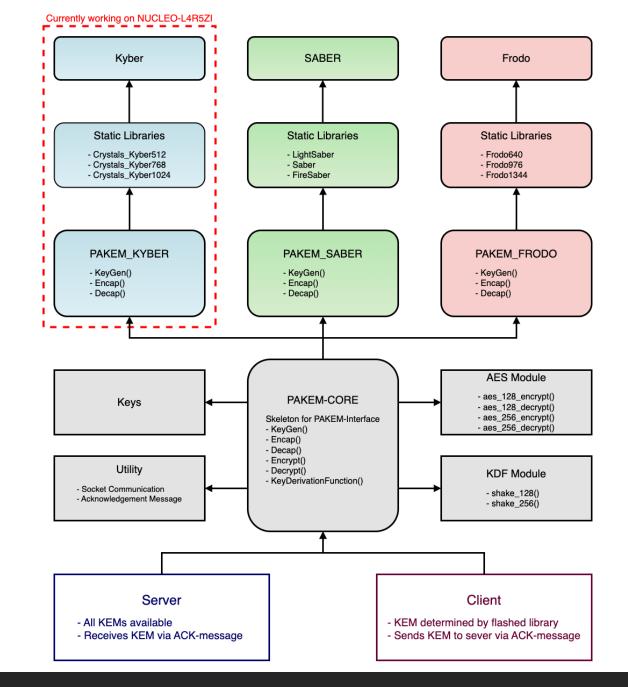
Alice		Bob
Password π		Password π'
$K_{\pi} = \mathcal{KDF}(\pi)$ $sk_{a}, pk_{a} \xleftarrow{\$} KeyGen$		$K_{\pi'} = \mathcal{KDF}(\pi')$
$s\kappa_a, p\kappa_a \leftarrow KeyGen$ $apk_a \stackrel{\$}{\leftarrow} C_{K_{\pi}}(pk)$		
$apk_a \leftarrow C_{K_\pi}(pk)$	apk_a	
	\xrightarrow{apnu}	$pk'_a = \mathcal{C}_{K_{\pi'}}^{-1}(apk_a)$
	\leftarrow^{C_b}	$(c_b, \overline{K}) = Encap(pk'_a)$
$\overline{K}^* = Decap(sk_a, c_b)$ $K = \mathcal{KDF}(\overline{K}^*)$		$K = \mathcal{KDF}(\overline{K})$

Password Authenticated Key Encapsulation Mechanism

PAKEM Architecture

Flexibility

Interchange components quickly

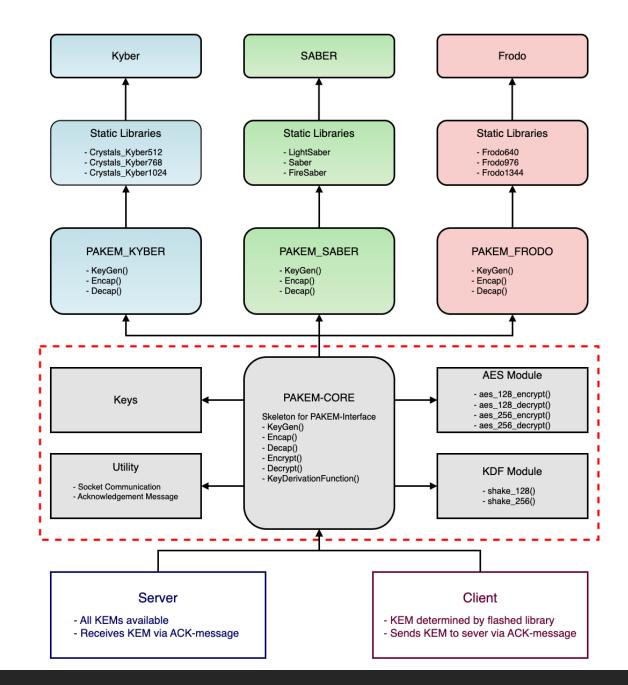

➤ Usability

➢ Easy to use interface

- ➤ Efficiency
 - ➢ Improved memory usage

Extensibility

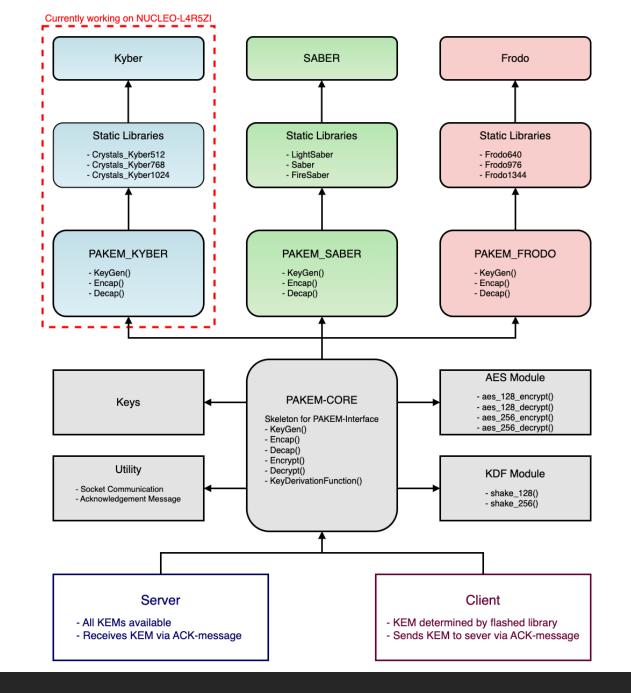
 \succ Adding KEMs in the future



Used Libraries

≻ TinyAES [1]

- PKCS7 Padding [2]
- > Shake128/256 [3]


Tiny aes in c: https://github.com/kokke/tiny-AES-c
Pkcs7-padding: https://github.com/GRISHNOV/PKCS7-Padding
Pqcrypto-lweke: https://github.com/microsoft/PQCrypto-LWEKE

Secondary Achievements

- Communicate KEM with ACK-Message
- Memory-Efficiency

> Usability

LibOpenCM3 Integration

- Handle USART communication with libOpenCM3 [1]
- Keeping STM32 HAL for other setups (GPIO, clocks, ...)

\bigcirc Linking and compiling with libOpenCM3

Initializing hardware, sending correct strings

- \triangle Interrupts for USART never reached
- ⚠ Debugging is difficult, tools by STM32CubeIDE limited and unreliable
- ▲ Conflicts between STM32 HAL and libOpenCM3

Optimized CRYSTALS-Kyber-KEM

- Post-Quantum Crypto Library for the ARM Cortex-M4 (PQM4 [KPR+])
- Speed- and stack-optimized variants
- Benchmarks were run with speedoptimized variant

Memory Benchmarks

- ➢ Thorough speed and memory benchmarks on different system configurations and subroutines
- Compare PAKEM to modified Kyber-Ding-PACE
- Identify memory-intensive subroutines

- Intercepting memory allocation and deallocation
- Tracking total memory usage, peak memory usage and memory usage in subroutines
- \bigcirc Transmitting memory profile for analysis

		Previous Work	Our Work			
		Kyber-Ding- PACE	PAKEM Kyber512	PAKEM Kyber768	PAKEM Kyber1024	
RAM and FLASH	RAM used (kB)	4.2	3.6	3.6	3.6	
RAM and FLASH	FLASH used (kB)	61.3	91.6	91.9	93.5	
	total usage (kB)	48.4	8.8	13.8	19.9	
	global peak (kB)	47.3	5.4	8.9	13.3	
	before protocol (kB)	0.1	0.2	0.2	0.2	
	after protocol (kB)	47.3	2.8	5.2	8.4	
Hoop	keygen peak (kB)	5.9	3.4	5.6	8.1	
Heap	keygen delta (kB)	5.9	3.2	5.4	7.9	
	apk encrypt peak (kB)	2.3	1.8	2.5	3.4	
	apk encypt delta (kB)	2.3	1.0	1.3	1.8	
	decap peak (kB)	0	1.0	2.0	3.4	
	decap delta (kB)	0	-1.6	-1.7	-1.5	

Timing Benchmarks

➤ Timer to measure individual methods

Timer to measure total runtime of the protocol

		Previous Work	Our Work			
		Kyber-Ding- PACE	PAKEM Kyber512	PAKEM Kyber768	PAKEM Kyber1024	
	sendClientPakemSetup (ms)	504	502	502	502	
	generateKeyPair (ms)	67	32	52	82	
Function Calls	sendClientPublicKey (ms)	501	518	525	533	
Function Cans	receiveDecapsulatedSecret (ms)	86	34	56	337	
	deriveSessionKey (ms)	45	1	1	1	
	total time (ms)	3669	1095	1146	1469	

LibOpenCM3 [1] integration A

OpenSSL compilation for ARM \land

Missing hardware implementations for SABER [DKRV18] and Frodo [BCD+16]

Infrastructure (VM, STM32 Cube IDE) /

Multiple redesigns of system architecture Λ

Challenges

Future Work

USART with libOpenCM3[1]

Expand code for real-world scenario

Implement SABER [DKRV18] and Frodo [BCD+16] on STM32

Further benchmarking to compare KEMs

Demonstration

REFERENCES

- [BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.
- [KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4.
- [DKRV18] Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-secure kem. In Progress in Cryptology AFRICACRYPT 2018, 2018.
- [BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange from lwe. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS '16, page 1006–1018, New York, NY, USA, 2016. Association for Computing Machinery.