
Verifiable Decryption in the Head

Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne
and Tjerand Silde

Presented at ACISP 2022

Improved Version:
Emil August Hovd Olaisen, Thomas Haines, Peter Rønne and

Tjerand Silde
Presented at NIST Threshold Crypto Workshop 2024

February 14, 2025

February 14, 2025 1 / 31



Verifiable Decryption

For a ciphertext c and plaintext m we want a proof that

m = Dec(c , sk)

Use cases include

E-Voting: Decryption of individual votes or sum of votes.

Decryption mix-nets for privacy

Verifiable Functional Encryption

Privacy-preserving financial applications

Often we need to decrypt many ciphertexts verifiably at the same time – we
need something that scales well in this situation.

February 14, 2025 2 / 31



Motivation - JCJ

Juels, Catalano, Jakobsson 2005 (widely known as the JCJ scheme)

Seminal paper on coercion-resistant voting protocols

Not just receipt-freeness, but e.g. also security against

Randomization attacks
Forced abstention attacks

Efficiency problem: Tally time quadratic in number of submitted
ballots - needs a Plaintext Equivalence Test for each pair of ballots,
and pair of voters and ballots.

Clarkson, Chong, Myers 2008, “Civitas”

Implementation of JCJ

Precinct-type ballot box design for better tally time, but less privacy

Several specifications

February 14, 2025 3 / 31



JCJ - Main Idea

Verify eligibility of a ballot using a preregistrered credential.

Voter authenticates ballot using her credential.

To preserve privacy credential under encryption.

Public verification of whether encrypted credential is in the list of
registered credentials

Done using Plaintext Equivalence Test

PET (Enc(C1),Enc(C2)) =

{
1 if C1 = C2

random if C1 ̸= C2

Proof using homomorphic properties of encryption (ElGamal for JCJ)

(Enc(C1)/Enc(C2))
r = Enc((C1/C2)

r )

Verifiable decryption to reveal

(C1/C2)
r

February 14, 2025 4 / 31



Password-based Authentication

Credentials can in principle be low entropy (does have problems for
coercion resistance if entropy too low)

Could in principle to create a PAKE

Alice and Bob exchange pkA, pkB

Joint threshold PK from pk = pkA ⋆ pkB

Alice and Bob submit EncpkA(πa) and EncpkB (πb) (plus ZKPs)

Alice and Bob run (interactive) PET to test πa
?
= πb (test result can

be kept secret or public)

We can bind any key exchange to this check

Can easily be generalised to a multi-user setting

Very inefficient

February 14, 2025 5 / 31



Verifiable Decryption

Let us return to the problem of efficient verifiable decryption.

February 14, 2025 6 / 31



ElGamal Verifiable Decryption

Recall ElGamal Encryption

Prime order cyclic group G

Generator g

Public key pk = g x , secret key x = sk

Enc(m, r) = c = (c1, c2) = (g r , pkrm) = (g r , g rxm)

Decrypt: Dec(c, x) = c2 · c−x
1 = m

Given ciphertext c and plaintext m, to prove that Dec(c, x) = m it is
enough to

Publish A = cx1 , Verifier should check c2 · A−1 = m

Prove logc1 A = logg pk

Chaum-Pedersen proof of discrete log equality

Efficient Sigma protocol

Non-interactive via Fiat-Shamir transformation (or similar)

February 14, 2025 7 / 31



Post-quantum Verifiable Decryption

For many systems we can do efficient verifiable decryption.

For PQ encryption harder. There are schemes where we can compute
randomness from ciphertext using the secret key (like Paillier), but this is
not Zero-Knowledge proof decryption.

We get first efficient lattice-based verifiable decryption with only one server.
Especially efficient when number of ciphertexts is much larger that the
security parameter.

February 14, 2025 8 / 31



Really Stupid Idea

An easy way to verify any decryption would be to hand out the secret key
and the verifier could decrypt herself.

The interesting case is where we want to preserve the secrecy of the
decryption key, e.g. to keep secrecy of other ciphertexts.

February 14, 2025 9 / 31



Less Stupid Idea

Consider again ElGamal pk = g x and c = (c1, c2)

Split key pk1 = g s1 and pk2 = g s2 . Verifier checks pk = pk1 · pk2. I.e.
x = s1 + s2

Decryption factorizes A = cx1 = cs11 · c
s2
1 = A1 · A2

Prover gives pk1, pk2,A1,A2. Verifier checks pk = pk1 · pk2 and that
m = c2 · (A1 · A2)

−1

Cut-and-choose: The verifier asks to see sb for b = 1, 2 and checks
pkb = g sb and Ab = csb1
Soundness 1/2 (prover could use bad randomness in A1 or A2)

Can be repeated to have soundness error exponentially suppressed.

Less efficient than Chaum-Pedersen, but maybe it generalises to other
schemes, especially with homomorphic properties?

February 14, 2025 10 / 31



General transformation - Idea

Verifiable Decryption from Distributed Decryption

A 2-party passively secure distributed decryption protocol can be
transformed into a 1-party proof of correct decryption.

Like “MPC in the head”:

Even though we only have one player (the prover) we are going to
artificially split into two players using the distributed decryption

The verifier does a cut-and-choose between the two virtual players

Prover reveals all secrets and randomness for the challenged virtual
player

The verifier checks that the key share and decryption shares are
correctly constructed

February 14, 2025 11 / 31



General transformation - Advantages

Verifiable Decryption from Distributed Decryption

A 2-party passively secure distributed decryption protocol can be
transformed into a 1-party proof of correct decryption.

Advantages:

We get a soundness factor 1/2 for each key distribution – but can be
done at the same time for many ciphertexts decryptions

Security (soundness error) level can be adapted dynamically in the
interactive protocol, and kept low for risk-adverse adversaries

Pre-computation possible for fast online phase

Can be made non-interactive e.g. via Fiat-Shamir transformation

We only need passively secure distributed decryption since we verify the
honest construction of the decryption shares via the secret key and
randomness

February 14, 2025 12 / 31



General transformation - Challenges

Verifiable Decryption from Distributed Decryption

A 2-party passively secure distributed decryption protocol can be
transformed into a 1-party proof of correct decryption.

Some challenges

We need to re-share the same decryption key – not just do a new key
generation

We need to be able to recover the secret key from the key shares for
the security proof. I.e. need extra algorithm compared to standard
distributed decryption

We need to verify that the revealed key is correct (however not for
each ciphertext)

In security proof we need to simulate both key shares and the
decryption shares

This means we need to change the definition of passively secure distributed
decryption slightly compared to standard definitions.

February 14, 2025 13 / 31



Advantages

Security (soundness error) level can be adapted dynamically

Pre-computation possible for fast online phase

Soundness error can be adapted e.g. to risk-adverse adversaries for
more efficiency

Fast for many ciphertexts decrypted at the same time

February 14, 2025 14 / 31



Passively secure distributed decryption

Key generation algorithm KeyGen

Encryption algorithm Enc

Decryption algorithm Dec.

Predicate KeyMatch with takes a public and secret key (New)

We require that for all matching public and secret keys pk, sk and message
m, Dec(sk,Enc(pk,m)) = m.

February 14, 2025 15 / 31



Passively secure distributed decryption

A distributed decryption protocol for this public key cryptosystem consists
of four algorithms (here for two parties)

The dealer algorithm (Deal) takes as input a public key and
corresponding secret key and outputs two private key shares and some
auxiliary data (modified from standard definition).

The verify algorithm (Verify) takes as input a public key, auxiliary data,
an index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a
ciphertext and outputs a decryption share.

The reconstruction algorithm (Reconstruct) takes as input a ciphertext
and two decryption shares and outputs either ⊥ or a message.

The find key algorithm (FindKey) takes as input two secret key shares
and returns a secret key (new).

February 14, 2025 16 / 31



Security of passively secure distributed decryption

Intuitively a distributed decryption protocol is correct if the Play and
Reconstruct collectively recover the encrypted message and verification
accepts when the dealer is honest.

Definition (Correctness)

A distributed decryption protocol is correct if for all ciphertexts c , any key
pair (pk, sk) such that KeyMatch(pk, sk) = 1, any (sk0, sk1, aux) output by
Deal(pk, sk), then Verify(pk, aux, 0, sk0) = 1 = Verify(pk, aux, 1, sk1) and

Pr [m← Dec(sk, c); Reconstruct(c ,Play(sk0, c),Play(sk1, c)) = m]

≥ 1− negl

February 14, 2025 17 / 31



Security of passively secure distributed decryption

For a distributed decryption protocol we must trust the dealer for privacy,
but not integrity.
Integrity ensures that if both secret shares given by the dealer are valid
(according to the Verify algorithm) then the Play and Reconstruct will
collectively recover the encrypted message.

Definition (Integrity)

A distributed decryption protocol has integrity if for all ciphertexts c , public
keys pk, secret key shares (sk1, sk2), and auxiliary data aux and sk output
by FindKey(sk0, sk1) satisfying
Verify(pk, aux, 0, sk0) = 1 = Verify(pk, aux, 1, sk1), we have that

Pr
[
KeyMatch(pk, sk) ∧ Reconstruct(c ,Play(sk0, c),Play(sk1, c))

= Dec(sk, c)
]
≥ 1− negl.

February 14, 2025 18 / 31



Security of passively secure distributed decryption

For standard threshold cryptosystems and distributed decryption, security is
defined through the usual security games for public key cryptosystem,
allowing the adversary access to the decryption key shares through
decryption share oracles.
We need instead a variant of simulatability, namely we must be able to
simulate both decryption key shares and decryption shares in a consistent
fashion.

Expddp−sim−0
A (pk, sk)

(i , (c0, ..., cτ ), (m0, ...,mτ ))←r A(pk)
(sk0, sk1, aux)←r Deal(pk, sk)

∀j : dsj ← Play(sk1−i , cj)

b = A(aux, ski , (ds0, ..., dsτ ))
return b

Expddp−sim−1
A (pk)

(i , (c0, ..., cτ ), (m0, ...,mτ ))←r A(pk)
(ski , aux)←r DealSim(pk, i)

∀j : dsj ← PlaySim(pk, ski , cj ,mj)

b = A(aux, ski , (ds0, ..., dsτ ))
return b

February 14, 2025 19 / 31



Security of passively secure distributed decryption

Definition (Simulatability)

Consider a pair of algorithms DealSim and PlaySim and an adversary A
playing the experiments from last slide, where A always outputs
c = (c0, ..., cτ ),m = (m0, ...,mτ ) such that {mj = Dec(sk, cj)}τj=1. The
simulatability advantage of A is

Advddp−sim(A, pk, sk) = |Pr[Expddp−sim−0
A (pk, sk) = 1]−

Pr[Expddp−sim−1
A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ϵ)-simulatable
(or just simulatable) if no t-time algorithm A has advantage greater than ϵ.

February 14, 2025 20 / 31



ElGamal Passively secure distributed decryption

The dealer algorithm (Deal) takes as input a public key gx and
corresponding secret key x , samples x0 from Z∗

p, sets x1 = x − x0 and
returns (x0, x1, aux = (gx0 , gx1)).

The verify algorithm (Verify) takes as input a public key pk, auxiliary
data aux = (aux0, aux1), an index i and a secret key share x and
outputs 1 iff (gx = auxi ) ∧ (pk = aux0aux1).

The player algorithm (Play) takes as input a secret key share x and a
ciphertext (c1, c2) and outputs a decryption share cx1 .

The reconstruction algorithm (Reconstruct) takes as input a ciphertext
c1, c2 and two decryption shares (t0, t1) and outputs c2/(t0t1).

The find key algorithm (FindKey) takes as input two key shares
sk0, sk1 and outputs sk0 + sk1

February 14, 2025 21 / 31



ElGamal Passively secure distributed decryption

Privacy: The simulators DealSim and PlaySim work as follows:

DealSim takes the public key pk and a bit i and samples xi from Z∗
p

and returns (wlog) (xi , (g
xi , pk/gxi )). It is clear that the auxiliary data

and secret key from the simulator have the same distribution as the
Deal.

PlaySim takes as input public key pk, secret key xi , ciphertext (c1, c2),
and message m and returns a decryption share c2/(c

xi
1 m). Since m is

the message encrypted in the ciphertext this is a perfect simulation if
m is the correct decryption.

February 14, 2025 22 / 31



General Transformation

The passively secure distributed decryption, as defined above, allows us to
make a Sigma protocol for correct decryption.

February 14, 2025 23 / 31



General Transformation

February 14, 2025 24 / 31



Sigma Protocol

Completeness: Up to the possible negligible error introduced by decryption
failures, completeness follows correctness of the distributed decryption
protocol.

(Special) Soundness: By rewinding, any cheating prover with a significant
success probability can be used to create two accepting conversations
(w ,β, z) and (w ,β′, z ′), with β ̸= β′. From this it follows that for at least
one k , β[k] ̸= β′[k], the verify algorithm has accepted both secret key
shares and every decryption share in this round has been correctly created
using the Play algorithm. Then, since the ciphertexts are encryptions of the
first message vector, integrity implies that FindKey will recover a witness
which matches the public key and for which the messages match the output
of the decryption function.

Honest-Verifier Zero-Knowledge: Here we build a simulator using DealSim
and PlaySim.

February 14, 2025 25 / 31



Machine-Checked Proof

Transformation checked in Coq

Assuming perfect correctness, integrity and simulatability

Instantiated for ElGamal

Does not work for lattice-based primitives (presently)

February 14, 2025 26 / 31



Lattice-based verifiable decryption

The main novelty is that we can construct a passively secure distributed
decryption for lattice-based encryption and use this to get decryption proofs.
We use

BGV encryption by Brakerski, Gentry and Vaikuntanathan

BGV encryption is also used as commitment scheme

February 14, 2025 27 / 31



Lattice-based verifiable decryption

BGV Setup and Key generation

p ≪ q be primes, let Rq and Rp be polynomial rings

Key Generation: Sample a←$ Rq and sample short s, e ←$ Rq such
that max(∥s∥∞, ∥e∥∞) ≤ B∞
pk = (a, b) = (a, as + pe) and the secret key sk = (s, e)

BGV Encryption of m in Rp

Sample short r , e ′, e ′′ ←$ Rq

Encpk(m) = (u, v) = (ar + pe ′, br + pe ′′ +m)

BGV Decryption

m = (v − su mod q) mod p

Distributed decryption of c = (u, v) (building on Bendlin and Damg̊ard)

s = s1 + s2 + ...+ sξ secret key shares

Party j computes mj = sju

sample some large noise Ej ←$ E ⊂ Rq, ∥Ej∥∞ ≤ 2sec(BDec/pξ)

dsj = mj + pEj

m ≡ (v − (ds1 + ...+ dsξ) mod q) mod p

February 14, 2025 28 / 31



Lattice-based verifiable decryption

Exact Amortized Zero-Knowledge Proof of Short Openings. This is the
main novelty compared to ElGamal. These proofs are needed in the
deal algorithm to prove that the decryption keys have short
randomness. The proofs need to be verified by the Verify-algorithm.

More efficient than previous proposals and comparable proof size to
simultaneously developed proof technique by Lyubashevsky et al.
(PKC’21)

February 14, 2025 29 / 31



Improved version

Use almost linear decryption from Boyle et al (EuroCrypt 2019)
We use

440× smaller proof size

10× smaller proof size than Lyubashevsky et al.

February 14, 2025 30 / 31



New Idea

Before verify either gets s0 or s1

New idea: Use homomorphic structure and let verifier challenge with
a, b (a ̸= b) and get as0 + bs1

For lattice-based encryption a, b needs to be small and error needs to
be adapted

February 14, 2025 31 / 31


