
Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration with

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration with

Implementation of a
QR PACE protocol
Project System Development (M.Sc.)

WS 2022/23

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Agenda
● Motivation and Setting

● Rectified PACE Protocol

● Contributions

○ Programming language migration

○ Fix of communication bug

○ Provision of benchmark capabilities

● Live Demonstration

● Outlook

2

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Motivation and Setting

● Establishment of quantum computers (QCs) will pose challenges to cryptography and eIDs
○ Widespread cryptographic primitives become obsolete (e.g. DH, RSA)

○ Threat to currently used eID protocols (such as PACE and EAC)

● Implementation of PACE based on Kyber
○ Considered safe against future QC attacks

○ Implementation of necessary KEMs already exist (e.g. PQ-Crystals1, PQM42)

● Development on STM32 Nucleo Board3 (with ARM Cortex-M4 processor)
○ Sufficiently similar to the computation capabilities of an eID

○ Card terminal simulated by ordinary computer

3

1 https://github.com/pq-crystals/kyber
2 https://github.com/mupq/pqm4
3 STM32L4R5ZIT6

https://github.com/pq-crystals/kyber
https://github.com/mupq/pqm4
https://github.com/pq-crystals/kyber
https://github.com/mupq/pqm4

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

● Generate nonce

● Encrypt nonce with PIN-derived key

● Send KEM public base A with encrypted nonce

● Recover nonce using PIN-derived key

● Compute ephemeral KEM PKs

● Mask PK with hashed nonce

● Exchange public keys

● Unmask PK
A

with decrypted nonce

● Encapsulate pre-keys using ephemeral KEM PKs

● Decapsulate pre-keys K
a

K
b

● Derive master key K

● Create session keys (K
enc

,

K

MAC
, etc.)

● Create session tokens T
A

T
B

● Exchange encrypted messages

Rectified PACE Protocol: Kyber-Ding PACE

4
► eID ► Terminal ► Both

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Contributions

5

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Programming language migration: C++ → C

Why?

● Performance: C provides low-level control and a fast, efficient way to
perform computations required in cryptographic algorithms.

● Portability: Cryptographic algorithms must be implemented
consistently across different platforms to ensure their security. C is
widely supported and known for its portability, making it a better
choice for cryptographic implementations.

● Standardization: C is an established standard and widely adopted,
making it easier to compare, audit, and review cryptographic
implementations.

● Security: C has a straightforward programming model with fewer
ways to write incorrect code, reducing the risk of security
vulnerabilities. It also provides low-level control over the hardware,
which is important for implementing secure cryptographic algorithms.

6

How?

● Replaced C++ Classes with Structs

● Replaced C++ and third party libraries with C ones

● Replaced automatic C++ memory management

with explicit memory allocations (const char*,

malloc() …)

● Code refactor to make use of C features (less

casting), i.a …

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Fix of Communication
Bug

● Communication from Server to

Client fails

● Server and Client go into a Deadlock

where they are waiting on each other

7

sends ACK receives
ACK

waits for
ACK sends ACK

waits for
ACK

waits for
Data

Client Server

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Slow Hardware as
an Error Source

● One possible problem is that the
client needs to actively be in receive
mode

● Since the server is faster than the
client, this may cause issues

● This can be solved by proper
interrupt handling

8

Client Server

send Mode receive Mode

change Mode change Mode
send Mode

receive Mode
change Mode

receive Mode

send ACK

send ACK

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration with

Live Demo

9

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Protocol Output of Terminal
Waiting for data
reading 16 bytes
Done
[+] Connected!
Sending 16 bytes
Done
Waiting for data
reading 32 bytes
Done
[+] Nonce Generation
[+] Nonce:
f19032b357f8c90aad…
Waiting for data
reading 32 bytes
Done
[+] Generation of Asymmetric Key
Sending 1184 bytes
Done
Waiting for data
reading 1184 bytes
Done

10

[+] Public Seed:
f0498e9387a1884de0f4…
[+] Public Key a:
8e875962557f7851…
[+] Public Key b:
7f997c7805acadb6…

[+] PreKey Generation
Sending 1088 bytes
Done
Waiting for data
reading 1088 bytes
Done
[+] shared secret a:
56fa138a8f3c30dc793d8b35263…
[+]shared secret b:
887eabd8953d098b876e01643a…
[+] cipher a:
57e70289bfc0f4b71b…
[+] cipher b:
074a2bcb059ee8700…
[+] Token Verification
Sending 16 bytes
Done

Waiting for data
reading 16 bytes
Done
Verification successful.

[+] SessionKey:
f571056572ef6aea3c94…
[+] EncryptionKey:
62e6471ec6597b3c…
[+] MacKey:
5f0bed4be342e093…
[+] Mac'Key:
c88d0d9f391d2a31…
[+] SessionKey
[+] Key:
62e6471ec6597b3c…
[+] SID:
8e875962557f785118…
Waiting for data
reading 4 bytes
Done

Pre-Communication lasted
3669 ms
Waiting for data
reading 96 bytes
Done
48656c6c6f2c206…

Hello, my name is Alice
and I study Computer
Science at the Hochschule
Darmstadt.
Sending 96 bytes
Done

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Benchmark Capabilities

● Time benchmarks for the μ-controller to evaluate the implementation

● Processor on board has various count/time capabilities
○ 64-bit register TIM5 selected by us for benchmarks

■ CLK = 120 MHz
■ Pre-Scaler for TIM5 = 60,000

→ One tick ~ 0.5 ms
■ Timing precision could be further increased

● Setup and usage are described in the repository’s wiki1

● No benchmarks have been collected so far

11
1 https://code.fbi.h-da.de/aw/prj/athenepqc/mpse-eid-implementation/-/wikis/Experimental-setup

https://code.fbi.h-da.de/aw/prj/athenepqc/mpse-eid-implementation/-/wikis/Experimental-setup

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration within collaboration with

Future Work

● Run benchmarks with different configurations on the board

● Deploy Kyber implementation from the pqm4 library

● Take a look at libopencm3 as a possible HAL replacement

12

Ilyes Ben Dlala | Hans Geißner | Jean Kanellakopoulos

in collaboration with

Thank you for your attention!

13

