

MPSE - SS2022

Implementing eID protocols

Chiara-Marie Zok Daniel Christopher Römer Martyna Orszula Patrick Moos Sebastian Schuch

Agenda

1. Introduction

2. Where we began 3. Goals 4. Our Work 5. Future Work 4. 2. Code 4. 3. Board

6. Conclusion

4.4. Problems

1 Introduction

- PIN based authentication might be threatened by quantum computers
- Find a scheme without any connection between PIN and encryption key
- Only use quantum safe components
- Implement POC

2 Where we began

Decisions:

- CRYSTALS Kyber as PQC scheme
- Which boards to use

Implementations:

- PACE and Kyber on Linux (Mint)
- Kyber on board

Proposals:

• Idea to incorporate nonce

3 Goals

First goal:

• Develop a working prototype

Second goal:

• Make it run on a development board

Side goals:

• Fix issues left over from the previous semester

4 Our Work

4.1 Theory

Exchange of PACE protocol

- New Kyber-Ding-PACE based on Ding PAKE
- Solves nonce problem

Additionally

- Human readable run on paper
- Look into attacks

4.1 Kyber Ding PACE

Alice		Bob
password π		password π
	Exchange nonce	
$K_{\pi} = \mathcal{H}(\pi 0)$		$K_{\pi} = \mathcal{H}(\pi 0)$
choose $n \leftarrow \mathbb{Z}_q$		
$z = C(K_{\pi}, n)$		
generate $\mathbf{A} \in \mathbb{R}_{q=3329}^{k \times k}$		
	$\xrightarrow{\mathbf{A},z}$	
		$n = C^{-1}(K_{\pi}, z)$
	Mapping	
generate $\mathbf{s}_a, \mathbf{e}_a \in \mathbb{R}_{n=3}^k$		generate $\mathbf{s}_b, \mathbf{e}_b \in \mathbb{R}_{n=3}^k$
$\mathbf{t}_a = \mathbf{A}\mathbf{s}_a + \mathbf{e}_a$		$\mathbf{t}_b = \mathbf{A}\mathbf{s}_b + \mathbf{e}_b$
	(tb)	
	with hash H:	
	$\{0,1\}^{256} \to \mathbb{R}^k_{a=3329}$	
$\mathbf{p}_{a} = \mathbf{t}_{a} + \mathbf{H}(n)$	Pa Pa	$\mathbf{t}_{a} = \mathbf{p}_{a} - \mathbf{H}(n)$
Ta a la	two-path preKeys	-u Fu(-/
generate $m_a \leftarrow \{0,1\}^{256}$		generate $m_b \leftarrow \{0,1\}^{256}$
$(\hat{K}_{a_1}(\mathbf{r}_a, \mathbf{e}_{a_1}, e_{a_2})) = \mathbf{G}(\mathbf{H}(\mathbf{t}_b), m_a)$		$(\hat{K}_{b_1}(\mathbf{r}_{b_1},\mathbf{e}_{b_1},e_{b_2})) = \mathbf{G}(\mathbf{H}(\mathbf{t}_a),m_b)$
(a, (-a, -a1, -a2)) = ((-b),a)	with hash G :	(0;(-0;-01;-02)) = ((-a);0)
	$\mathbb{R}^k_{a=2220}, \{0,1\}^{256} \rightarrow$	
	$\{0,1\}^{256}, (\mathbb{R}_{n-3}^k, \mathbb{R}_{n-3}^k, \mathbb{R}_{n-3}^k)$	
$\mathbf{u}_{a} = (\mathbf{A}^{T}\mathbf{r}_{a} + \mathbf{e}_{a1})$	C . J . C 1-3. 1-3. 1-3.	$\mathbf{u}_{b} = (\mathbf{A}^{T}\mathbf{r}_{b} + \mathbf{e}_{b1})$
$c_a = \begin{cases} a & (1 - a) \\ a & -t^T \mathbf{r} + c_a + [q] \\ m \end{cases}$		$c_b = \begin{cases} c_b - t^T \mathbf{r}_b + e_{10} + \lceil g \rceil, m_b \end{cases}$
$\left[e_a = e_b e_a + e_{a2} + \left[\frac{1}{2} \right] \cdot m_a \right]$	$c_0 = (\mathbf{u}_0, \mathbf{v}_0)$	$\left(e_b - \mathbf{t}_a \mathbf{t}_b + e_{b2} + \left \frac{1}{2} \right \cdot m_b \right)$
	$\stackrel{c_b=(\mathbf{u}_b,v_b)}{\leftarrow}$	
$m_b^* = (v_b - \mathbf{s}_a^T \mathbf{u}_b)$		$m_a^* = (v_a - \mathbf{s}_b^T \mathbf{u}_a)$
$\hat{K}_{b}^{*}, (\mathbf{r}_{b}^{*}, \mathbf{e}_{b1}^{*}, e_{b2}^{*})) = \mathbf{G}(\mathbf{H}(\mathbf{t}_{a}), m_{b}^{*})$		$\hat{K}_{a}^{*}, (\mathbf{r}_{a}^{*}, \mathbf{e}_{a1}^{*}, e_{a2}^{*})) = \mathbf{G}(\mathbf{H}(\mathbf{t}_{b}), m_{a}^{*})$
$\int \mathbf{u}_{b}^{*} = (\mathbf{A}^{T} \mathbf{r}_{b}^{*} + \mathbf{e}_{b1}^{*})$		$\int \mathbf{u}_a^* = (\mathbf{A}^T \mathbf{r}_a^* + \mathbf{e}_{a1}^*)$
$c_b^* = \begin{cases} v_b^* = \mathbf{t}^T \mathbf{r}_b^* + e_{bc}^* + \lceil q \rceil \cdot m_b^* \end{cases}$		$c_a^* = \begin{cases} u^a & u^a \\ v^* = \mathbf{t}_a^T \mathbf{r}^* + e^* + \lceil q \rceil \cdot m^* \end{cases}$
generate $\gamma \leftarrow \int 0 \ 11^{256}$		$a_{a} = b_{a} + a_{a2} + a_{2} + a_{3}$
$\begin{pmatrix} \hat{V}^* & \text{if } \alpha = \alpha^* \end{pmatrix}$		$\begin{pmatrix} \hat{k}^* : k = -z^* \end{pmatrix}$
$\hat{K}_b = \begin{cases} K_b & \Pi & C_b = C_b \\ \ddots & \ddots & \ddots \end{cases}$		$\hat{K}_a = \begin{cases} \kappa_a & \kappa_a \\ \kappa_a & \kappa_a \end{cases}$
$z_a \text{ if } c_b \neq c_b^-$		z_b if $c_a \neq c_a^*$
	Authentication	
$K = \mathbf{KDF}(K_a, K_b)$		$K = \mathbf{KDF}(K_a, K_b)$
$K_{enc} = \mathcal{H}(K 1)$		$K_{enc} = \mathcal{H}(K 1)$
$K_{mac} = \mathcal{H}(K 2)$		$K_{mac} = \mathcal{H}(K 2)$
$K_{mac} = \mathcal{H}(K 3)$		$K_{mac} = \mathcal{H}(K 3)$
$T_A \leftarrow \mathcal{M}(K_{mac}, (\mathbf{t}_b, \mathbf{A}))$	T	$T_B \leftarrow \mathcal{M}(K_{mac}, (\mathbf{t}_a, \mathbf{A}))$
	$\xrightarrow{1_A}$	
	$\overleftarrow{T_B}$	
abort if T_B invalid		abort if T_A invalid
	Establish Session	
$key = (K_{enc}, K_{mac})$		$key = (K_{enc}, K_{mac})$
$\operatorname{sid} = (\mathbf{t}_a, \mathbf{t}_b, \mathbf{A})$		$\operatorname{sid} = (\mathbf{t}_a, \mathbf{t}_b, \mathbf{A})$
$pid = \epsilon$		$pid = \epsilon$

4.2 Code

- New class structure
 - Easier to use
 - Create session key object
 - Use this to send and receive encrypted messages
- Abstraction layer for the communication types
- Socket / USART
- TODO: (Bluetooth / NFC)

4.2 Code - Demo

4.3 Board

- Runs on STM32L4R5ZI
- Connected to PC via
 USART-Converter
- pqm4 project implements
 optimized Kyber for Cortex-M4

4.4 Problems

- USART communication
- Board -> PC
 - works
- PC -> board
 - o does not receive any data or only incomplete data
- Possible cause:
 - PC delivers data too fast
- Possible solutions:
 - Usage of flow control
 - Reduce baudrate

5 Future Work

Formal proof of security:

• Security of the protocol has been examined, but a formal proof is still missing

Kyber implementations:

• Only the reference implementation is used, there are more optimized implementations available

Board:

- Fix technical issues so the program can be tested
- Run a benchmark

6 Conclusion

- First goal: Develop a working prototype
 - ✓ Achieved
 - ✓ In a development environment
- Second goal: Make it run on a development board
 - \checkmark The program can be flashed onto the board and runs.
 - Communication doesn't work properly
- Side goals: Fix issues left over from the previous semester
 - \checkmark Nonce no longer part of the keying material
 - ✓ Protocol has been adapted
 - ✓ Dependency issues are resolved

- Agenda ٠
- Introduction Martyna • Martyna

Martyna

Martyna

Chiara

Chiara

Daniel

Daniel

Sebastian

Sebastian

Patrick

Patrick

- Where we began •
- Goals ٠
- -Theory •
- -Protocol •
- -Code ٠
- -Code Demo ٠
- -Board •
- -Problems •
- Future Work •
- Conclusion •