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1 Introduction

1.1 Project Description

Extended Access Control (EAC) [4] and Password Authenticated Connection Establishment
(PACE) [5] are considered standard EU protocols for establishing secure communication
between eCard chips and service terminals. Among other mechanisms, they are used
to verify the terminal’s access to data stored on the chip. These protocols are based on
cryptographic schemes and primitives such as RSA [9] and DH [18], which will be classified
as insecure according to NIST, due to the development of quantum computing [1].

The goal of the project is to implement and further develop these security protocols for the
authentication of electronic documents (eID), such as the electronic identity card (ePA),
and the electronic passport (ePassport), and to evaluate their capability and suitability for
the expected migration to post-quantum cryptography (PQC).[11]

1.2 Goals

The main goal for the entire project is it to replace the conventional cryptography in the
Password Authenticated Connection Establishment (PACE) protocol. This project was
planned for a minimum of two semesters therefore we have the following sub goals for this
semester:

• Understanding of the PACE Protocol

• Planning and implementing a proof of concept

• Research which Hardware we need

• Research which Post Quantum Cryptography (PQC) scheme we should take as
replacement

• Optional: Finding a solution how to successfully replace the current cryptography in
PACE
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2 Theory

Work on theory-related topics mainly involved understanding important protocols such as
PACE and finding suitable Post-Quantum Cryptography (PQC) algorithms. To be able to
pick out a fitting PQC algorithm, constraints had to be considered. Those were:

• Fit on eID cards

• already have an available implementation

• Preferably NIST Round 3

2.1 Diffie-Hellmann

Diffie-Hellman is a widely used key exchange protocol, which enables secure key agreement
over an insecure channel. It can either be implemented using discrete logarithms or elliptic
curves. [6] Both implementations are threatened by Shor’s algorithm, as soon as quantum
computers become usable [7]. Therefore a suitable replacement to use in PACE protocol
needs to be found.

2.2 PQC

To counteract the threat posed by Quantum Computers, the National Institute of Standards
and Technology (NIST) has launched something like a competition to standardize PQCs
[10]. This began in 2017 and is currently in Round 3, with the standards to be made available
by 2024. The reason we focus on the NIST candidates is that these submissions already had
a good code base, documentation, and benchmarks that simplified the decision process.
PQC schemes can be implemented in five different ways. These are either based on codes,
lattices, hashes, mulitvariates or supersingular isogenies. Due to the previously defined
constraints, it quickly became apparent that only lattice based schemes are suitable for our
use case.
The following is a brief introduction to lattice-based cryptography. The general idea is to
take a set of basis vectors and span an infinite lattice from them. Various problems can then
be defined on this lattice. For example, the closest vector problem, where the closest lattice
vector to a given point has to be found. In a 2D grid this is still easy to solve, but with
higher dimensions it quickly becomes more complex. Most implementations are based on
the Learning with Errors or Learning with Rounding problem.
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Fig. 1: Learning with Errors

As shown in Figure 1, a random uniform matrix A is multiplied by a secret vector s and
a noise vector e is added. The matrix A and result T can then be used as public key and
vector s as private key. The matrix and vectors are derived from a finite field or from a ring,
when Ring LWE (RLWE) is used. A variation of LWE is LWR where instead of adding an
error vector, deterministic rounding is used. Different implementations differ mainly in
the underlying ring, the type of error sampling and the error correction. The underlying
ring can be unstructured or structured (or ideal which is a subset of structured rings). The
advantage of using a structured lattice are that key sizes are smaller and computations are
faster. As a drawback structured lattices might not be as safe as unstructured lattices as their
structure could be exploited. [2]

2.3 Kyber

For this project it became apparent that the smaller key sizes and faster computations are
outweighing. From all the NIST candidates we had a closer look at NTRU, Kyber, Saber and
ThreeBears. We decided to continue with Kyber [19] an indistinguishable Adaptive Chosen
Ciphertext Attack (IND-CCA2) secure KEM over Module Lattices. Besides having the best
documentation there is already an implementation available on constrained hardware. But
what made Kyber special is that it offers three security levels, which are similar to those of
AES-128/192/256. All security levels use the same underlying ring:

Z𝑞 [𝑥] /(𝑥𝑛 + 1)

This means that all calculations are implemented once and only the dimension k is changed
to achieve a different security level. While most schemes use Gaussian sampling, Kyber
uses centered binomial sampling (CBD), which further speeds up computations.

2.4 KEX, AKE and KEM

Keys can be established in different ways. In a Key Exchange (KEX) two parties establish a
symmetric Key together. The Key Exchange can be complemented with an authentication
mechanism, to prevent man in the middle attacks, which is then called an authenticated key
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exchange. A different approach is using a Key Encapsulation Mechanism, where only one
party establishes the key which is then encapsulated and sent to the other party. The PACE
protocol uses an AKE but most NIST candidates are KEMs.

2.5 Extended Access Control (EAC)

EAC is a set of advanced security features which includes several protocols, Chip Authenti-
cation (CA) and Terminal Authentication (TA), for electronic passports that protects and
restricts access to sensitive personal data contained in the RFID chip. It is executed along
Basic Access Control (BAC), respectively PACE and Passive Authentication. A detailed
description of these protocols can be found in the project wiki documentation.[15] The
main goal of the MPSE is to replace all cryptography that is used in these protocols with
post quantum cryptography. In the first semester the focus was set to PACE.[4]

2.6 Password Authenticated Connection Establishment (PACE)

PACE is executed before EAC to create a secure communication between terminal and chip,
so they can exchange their certificates safely in TA and CA. The protocol includes several
steps including a DH-Key agreement. PACE starts with generation of a random number
called nonce, that is created by the chip instance. This nonce is encrypted by the PIN that is
saved on each card. The nonce will be sent to the terminal and is decrypted by the user
by typing in his PIN. After that the chip and the terminal exchange ephemeral domain
parameters, which are created by a mapping protocol that is executed internally of PACE.
Based on these ephemeral domain parameters terminal and chip perform an anonymous
DH agreement. They derive their Key-Pairs from the ephemeral domain parameters and
exchange their public key with each other. They generate a shared secret and derive session
keys out of it. There is an Enc-Key, which is for the encryption for future communication
and a MAC-Key, which can be used for authentication purposes. Now they encrypt the
previously shared public keys with the MAC-Key, the chip uses the terminal-public-key and
the terminal uses the chip-public-key. This is used as a token. They exchange this token and
decrypt it with their MAC-Key to make sure both have the same keys. After that CA can
begin. The DH-key agreement was the concerning part which had to be replaced, so we
tried to replace it with a Kyber-PAKE. A detailed overview is shown by Figure 2.[5]
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Fig. 2: PACE

2.7 Replacement problems

PACE has an attribute that should be handed over to the new protocol. The nonce has low
entropy with an encryption of just 6 digits, so the knowledge of the nonce should not be
essential to derive the keys. For that PACE uses the mapping protocol and the ephemeral
domain parameters. This option doesn’t exists in Kyber, so a new idea was sought. A
temporary solution was implemented. The nonce was included in a hash value at the end of
the Kyber-PAKE protocol (see Figure 3), but that is not secure against passive attacks. If
someone would use a malicious terminal the right PIN could be cracked, by brute forcing
till the right decrypted nonce is derived.
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Fig. 3: Modified Kyber PAKE
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3 Hardware

3.1 Limitations

Given the project focuses on the final implementation being on an eID or traveling document,
we can assume that the current hardware restrictions apply for our use case.
If we take the current eID issued by the German Government the hardware specifications
as shown in Table 1 apply. These specifications limit us in several aspects of our project:
overall code size, size of keys, time taken to create keys and time taken to create ciphertext.
Even if we assume that new chips will be available for next generation eID cards and their
capacities in every compartment will be increased, the overall available computing power is
limited by the fact that energy is supplied through NFC and the PQC implementations have
not yet been realized in hardware.

Hardware Specs
EEPROM ≥142.5 KB
USER ROM ≥586 KB
USER RAM ≥10176 B
CPU 8/16/24/32 bit instructions
CRC CoCPU 16/32 Bit

Tab. 1: Hardware specification fur currently issued personal IDs by the German Government, supplied
by NXP as P60D145

3.2 Hardware for the Project

To realize the different scenarios, special hardware was acquired in order to reflect the
restricted environment the eIDs outline. The decision which hardware should be acquired
was based on several points:

1. Hardware should reflect the limitation of the target eID platform in a generalized
manner, limitations in RAM, ROM and computational power should apply.

2. NFC capabilities should be included or in someway the hardware should be extendable
to cover NFC capabilities.

3. If possible, implementations should be easily ported onto this new hardware platform.

4. Optional: Available optimizations in any form.

While taking these points into account we decided on several different development boards
that covered the above mentioned points (As shown in Table 2).
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Board CPU freq, Flash RAM Scenario
NUCLEO-L4R5ZI 120 MHz 2 MB 640 kB PICC performance
NUCLEO-L476RG 80 MHz 1 MB 128 kB reduced PICC performance
ST25R3911B-DISCO 80 MHz 512 kB 128 kB NFC-Reader (PICC/PCD)
M24SR-DISCOVERY 72 MHz 1 MB 96 kB NFC Tag (PICC)
ST25R3916-DISCO 80 MHz 1 MB 96 kB Host Card Emulation

Tab. 2: Acquired hardware for testing PQC algorithms in a restricted environment to reflect eID
limitations

The boards mentioned have been chosen as they cover our requirements as good as possible.
Limitations in computation as well as on the storage side are given. Although they do not
exactly match the hardware specifications of the NXP eID, we can impose even greater
restrictions by ourselves and check if we are below the given boundaries of eID hardware.
Furthermore there is already a PQC implementation for the NUCLEO-L4R5ZI development
board, which allows us to utilize already tested and optimized code in our project.
Although we weren’t able to test it during our project, two of the acquired five different
models are capable of communicating via NFC. In the next period of this project, these
boards can be used to test the implementations under the imposed limitations of the NFC
interface.

During the project, the main focus and testing of software and implementations has
been done on the NUCLEO-L4R5ZI - the code as well as the projects concerning the STM32
have been tested and evaluated on the aforementioned board.

3.3 Tools used for Hardware

The manufacturer offers tools for configuring, programming and flashing the development
boards. Via the STM32CubeIDE [21] it is possible to program the device using the
HAL-library, (an abstraction layer for ease of access) also the program can be live-debugged
if a ST-Link is connected or directly on the development board, furthermore the output from
the UART interface can be displayed with the included console window.
The cross-compilation for the target platform is done via the gcc-arm-none-eabi compiler
that can be separately downloaded via Github [3] or through the official repository for
Debian based distributions, if the STM32CubeIDE is not used. Also flashing the device is
possible out-of-the-box via STM32CubeIDE, as an alternative solution the st-flash tool [20]
can be used to flash and verify the binary onto the target platform.

3.4 Current Progress

Overall concerning the hardware, the project aims to: have OpenPACE and Crystals-Kyber
run on the development boards and utilize the NFC interface provided by some of the
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development boards.

As of the current state of the project we are able to include the pqm4 version [14]
of Crystals-Kyber and have it successfully run on the NUCLEO-L4R5ZI development
board [17]. Additionally our earlier attempts to build a library with crystals-kyber have
resulted in a Makefile that allows us to build the library including all the components needed
by Kyber and the development board.

Thus far, OpenPACE has not yet been successfully ported onto the development board, also
the NFC functionalities have to be included into the project to properly reflect the use case
of eID.

3.5 Open Issues

OpenPACE has to be included into the project, attempts to take the source files from the
project on Github [12] and include them into the project have not been successful.
During our tests we encounter the following problems:

• OpenSSL: The project depends on OpenSSL - building the complete library produces
a file that far exceeds the storage capabilities of the development board, added to
this fact OpenSSL has building issues with the gcc-arm-none-eabi compiler and its
source files provided by STM32CubeIDE.

• WolfSSL: To circumvent the issues with OpenSSL, WolfSSL was used as a substi-
tute. WolfSSL provides a package for the STM32CubeIDE [22] that can easily be
included into the project and allows for a successful build concerning the OpenSSL
dependencies.

• OpenPACE: Through WolfSSL the building dependencies are covered, but the build
process fails as several files in the source directory supplied by the gcc-arm-none-eabi
compiler seem to have C formatting errors. The issue seems to be caused by the
different data types, but this has not been verified as of this moment.

Kyber is currently running with all the source files supplied in the project, our intention
was to have a library file so that there is no need to always check several projects and copy
new files from the pqm4 project in Github into our own. At the moment the library can be
built but throws errors if included and referenced inside the project:

• Kyber library: Our Makefile [16] is capable of building the library which allows us to
include it into the project. When referenced and accessed, an error occurs referring
to the nttfast.S file which is optimized assembly code (taken from pqm4) used to have
increased computation speedup on the development board. When debugged, the code
throws a Hardfault inside this section, which has not been resolved as of yet.
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4 Implementation

4.1 Goals

For the implementation we had several goals:

• A working Testing lab for development.

• Implementing the PACE Protocol as a prototype.

• Find a solution to replace used cryptography. (optional)

4.2 Technology Stack

The following technology stack is used for prototype implementation:

• Docker

• OpenSSL

• OpenPACE [12]

• Kyber [13][8]

• C

all other dependencies that are needed for the Docker environment can be found in the file
/Sources/services/client/Dockerfile and /Sources/services/server/Dockerfile.
The dependencies for Kyber are already typed in both files but not tested.

4.3 Structure

Our structure simply reflects the two entities needed for the PACE protocol, a client (chip
card) and a server (Terminal) (see Figure 4):

These two entities were developed with two approaches: A docker based implementation
and a virtual machine based implementation. The virtual machine based approach was used
as our main development environment, and the docker approach was worked on, to check if
our implementation is reproducible on different Linux systems. This was mainly relevant,
because the build process of dependencies like Kyber and PACE required system specific
parameters. Both of our approaches of the prototype use the TCP protocol to communicate
with each other (Exchange of parameters and data). TCP is meant as a placeholder for now,
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Fig. 4: Client and Server entities for Docker and VM approach

and should be replaced with other, contact-less protocols like NFC in future iterations. The
implementation of our prototype was written in C11 and compiled with the clang compiler
with no optimizations enabled.
The files for our docker prototype can be found under /Sources/services in our repository.
The client and server implementation here both have their own Dockerfile. Under /Sources/
we have several scripts for building the prototype and setting up a docker environment for
the development. Docker Volumes are used to mount the source code and build scripts into
the docker instance and build them there. For Building the application we recommend to
use a IDE and also to use the already created VM for the development.

4.4 Current Status

At this point in time, in our implementation we successfully replaced Diffie-Hellman with a
Kyber-PAKE. It is important to note that the VM-based implementation of our prototype
was mainly used for development, and is more up to date than the Docker-based counterpart.
We chose to work on the VM-implementation mainly because the development on the VM
allowed us to use CLion as our IDE, which made debugging easier.

5 Outlook

5.1 Future Work

On the implementation side, there is a list of things that we couldn’t finish, or were out of
this semesters scope, but might be relevant in the future:

1. Update the Docker Environment: The Docker prototype is not on the same state as
the VM prototype and should be updated.
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2. Formal security proof: A formal security proof should be done, to verify that our
modifications to the PACE protocol utilizing the nonce are secure

3. Expand our implementation to additionally include TA (Terminal Authentication)
and CA (Chip Authentication).

4. Improve the implementation to accept new connections after success or failure.
(Currently the server terminates after a successful exchange, and doesn’t accept new
client connections).

5. Refactoring the source code

6. Continue the implementation on the boards
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