Materialien zum Praktikum Technische Grundlagen der Informatik

Praktikum 2

Darmstadt
FBI
Lehrende: R.S. Mayer - M. Müller

Praktikantln 1

Matrikelnr:

Praktikantln 2

Matrikelnr:

Datum:

Aufgabe 1 durchgeführt:

Aufgabe 2 durchgeführt:

Aufgabe 3b durchgeführt:

Aufgabe 3c durchgeführt:

Aufgabe 3d durchgeführt:

Aufgabe 3d durchgeführt:

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren

Themen: Ohmsches Gesetz, Halbleiterdiode, nichtlineare Strom - Spannungskennlinien. Realisierung einer einfachen logischen Schaltung mit Dioden, CMOS-Inverter, Leistungsaufnahme von digitalen Schaltkreisen

Aufgabe 1

Hochschule

Ermitteln Sie die Strom-Spannungskennlinie für die Diode D₂. Bitte gehen Sie hierzu in gleicher Weise vor wie in Praktikum 1 Aufgabe 1 zur Ermittlung der Strom-Spannungskennlinie eines Ohmschen Widerstands.

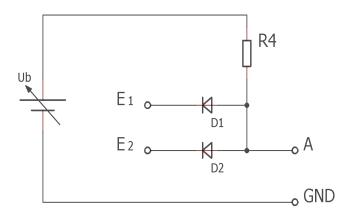
Schalten Sie, zum Schutz der Messgeräte und der Diode, den Widerstand R₁ in Reihe zur Diode. Dieser Widerstand ist für Ihre Messung nicht relevant.

Versuchen Sie bitte nicht gerade Spannungswerte (... 0,5V..0,6V ...) einzustellen, sondern achten Sie auf die Veränderungen des Amperemeters und wählen Sie hierüber geeignete Wertepaare. Ermitteln Sie viele Wertepaare in der unmittelbaren Umgebung der Durchlassspannung der Diode, damit die Kennlinie gut gezeichnet werden kann.

- a) Skizzieren Sie die Schaltung für die Ermittlung der Kennlinie.
- **b)** Ermitteln Sie Wertepaare und zeichnen Sie die Kennlinie.
- c) Handelt es sich um ein nichtlineares oder ein lineares Schaltungselement? Kann für die Diode D_2 ein Ohmscher Widerstand ermittelt werden? Begründen Sie bitte Ihre Antworten.

Anmerkung: Verwenden Sie für diese Aufgabe bitte bei dem Voltmeter den 2 Volt-Gleichspannungsmessbereich.

Für den Gleichstrommessbereich beachten Sie bitte den Hinweis Ihres Praktikumsleiters bzw. Tutors.


Praktikum 02 SS22.odt 02.05.2022

Sommersemester 2022

Lehrende: R.S. Mayer - M. Müller

Aufgabe 2

Bitte realisieren Sie folgende Schaltung:

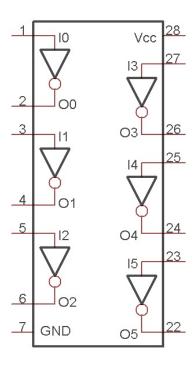
Experimentieren Sie mit dieser Schaltung indem Sie die unten stehende Tabelle vervollständigen. Verwenden Sie bitte für die Beschaltung der Eingänge E₁ und E₂ die Eingabetastatur des Digi-Board.

Beachten Sie: Ein Voltmeter besitzt stets einen endlichen Innenwiderstand.

E ₁	E ₂	A [logisch]	A [V]
L	L		
L	Н		
Н	L		
Н	Н		

- **a)** Für die Darstellung des logischen Zustands des Ausgangs A verwenden Sie bitte die LED-Anzeige des Digi-Board.
- b) Messen Sie die Spannung des Ausgangs A mit einem Voltmeter (entfernen Sie hierfür die LED-Anzeige). Bitte erklären Sie die Ergebnisse Ihrer Spannungsmessungen in der gebotenen Ausführlichkeit. Erklären Sie mittels der Erkenntnisse aus Aufgabe 2 die Differenzen zu L (GND). Erklären Sie mit einigen Sätzen die Funktionsweise der Schaltung.
- **c)** Welche logische Verknüpfung wird mit der untersuchten Schaltung realisiert? Können Sie mit Dioden ein NOR-Gatter aufbauen? Bitte begründen Sie Ihre Antworten.

Lehrende: R.S. Mayer - M. Müller


Aufgabe 3

Hinweis: Legen Sie den Eingang des zu messenden Inverters zwischen Ihren Messungen immer auf einen definierten Pegel (high oder low).

Vorbereitung: Machen Sie sich mit den Eigenschaften von Feldeffekttransistoren vertraut. Zeichnen Sie zur Vorbereitung einen komplementären CMOS-Inverter auf und erklären Sie die Funktionsweise. Machen Sie sich anhand der Kennlinien (z.B. Skript) klar, wann – in Abhängigkeit von der Eingangsspannung – welcher Transistor leitend wird.

Für die Durchführung des Versuchs stehen Ihnen wieder 3 Multimeter für die Messung von Strom oder Spannung zur Verfügung.

An Ihrem Laborplatz finden Sie den integrierten Baustein 74xx04, der 6 CMOS-Inverter enthält. Der logische innere Aufbau des Bausteins ist unten dargestellt. Die äußeren Ziffern bezeichnen die Pins der Fassung. Ix bezeichnet den Eingang des Inverters x und Ox den entsprechenden Ausgang.

- **a)** Bitte konstruieren Sie, im Rahmen Ihrer Vorbereitung, eine Beschaltung die folgenden Anforderungen genügt:
 - 1. Der Baustein wird mit einer Spannungsquelle (5V) versorgt.
 - 2. Der gesamte von der Spannungsquelle gelieferte Strom wird mit einem Messgerät gemessen.
 - 3. I₁ (Pin3) ist der Eingang für **alle** folgenden Messungen
 - 4. Die jeweilige Antwort (Spannung) des Inverters, am Ausgang O₁ (Pin4), wird mit einem Messgerät gemessen.
 - 5. Die unbenutzten Eingänge (I₀ und I₂ I₅) werden auf +5V gelegt.

Zeichnen Sie den zugehörigen Schaltplan.

Materialien zum Praktikum Technische Grundlagen der Informatik

Praktikum 2

Hochschule Darmstadt Sommersemester 2022 Lehrende: R.S. Mayer - M. Müller FBI 14.03.2022

b) Schalten Sie die Versorgungsspannung ein. Prüfen Sie Ihre Schaltung, indem Sie an den Eingang I₁ (Pin 3) zuerst ein Low-Signal (L) geben. Welche Antwort erhalten Sie am Ausgang O₁ (Pin 4)? Geben Sie jetzt ein High-Signal auf den Eingang und prüfen Sie die Spannung am Ausgang. Notieren Sie Ihre Beobachtungen. Stimmt dies mit Ihren Erwartungen überein? Messen und notieren Sie für beide Fälle den Strom, welcher durch die Schaltung fließt.

Beachten Sie: Bei der Messung der Spannung am Ausgang des Inverters fließt Strom durch das Messgerät, weil ein Voltmeter stets einen endlichen Innenwiderstand besitzt.

- c) Berühren Sie mit einem Finger den Eingang I₁ berühren Sie mit der anderen Hand abwechselnd den H- und den L-Pegel (bitte nichts anderes)? Was beobachten Sie? Ist ein CMOS-Eingang eher niederohmig oder hochohmig, ist er eher empfindlich oder unempfindlich? Warum sind die unbenutzten Eingänge der übrigen 5 Inverter mit dem H-Pegel verbunden? Beobachten Sie auch die Stromaufnahme der Schaltung. Notieren Sie wieder Ihre Beobachtungen. Geben Sie ferner im Protokoll kurze Antworten und Erklärungen auf die Fragen.
- d) Schließen Sie jetzt ein Rechtecksignal vom Digi-Board mit 10 Hz an den Eingang des zweiten Inverters (I₁). Beobachten, messen und notieren Sie den Strom, der vom Baustein verbraucht wird. Geben Sie danach alle höheren, verfügbaren Frequenzen vom Digi-Board bis zur höchst möglichen Frequenz von 100 kHz auf den Eingang I₁ und notieren Sie jeweils die Messergebnisse.

Wie erklären Sie sich die Erhöhung der Stromaufnahme, wenn Sie die Eingangsfrequenz erhöhen? Was bedeutet dies für CMOS-Schaltungen (aus denen der überwiegende Teil aller Computer besteht) wenn sehr viele Gatter (zig tausende) sehr oft (hohe Taktfrequenz) gleichzeitig schalten?