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Abstract. The rise of quantum computers poses a threat to asymmetric
cryptographic schemes. With their continuing development, schemes such
as DSA or ECDSA are likely to be broken in a few years’ time. We there-
fore must begin to consider the use of different algorithms that would be
able to withstand powerful quantum computers. Among the considered
algorithms are hash-based signature schemes, some of which, including
XMSS, are stateful. In comparison to stateless algorithms, these state-
ful schemes pose additional implementation challenges for developers,
regarding error-free usage and integration into IT systems. As the cor-
rect use of cryptographic algorithms is the foundation of a secure IT
system, mastering these challenges is essential.

This work proposes an easy-to-use API design for stateful signature
schemes, using XMSS(MT) as an example. Our design is based on find-
ings from literature as well as on a series of interviews with software
developers. It has been prototypically implemented and evaluated in
small-scale user-studies. Our results show that the API can manage the
stateful keys in a way that is transparent to the user. Furthermore, a
preliminary online-study has shown that the API’s documentation and
applicability are comprehensible. However, due to the transparent state
management, many of the study’s participants were unaware of using a
stateful scheme. This might lead to possible obstacles. Our current API
design will serve as the basis for a larger user-study in order to review
our preliminary findings in the next step.

Keywords: Post-quantum cryptography · API usability ·
Stateful signature schemes · Cryptographic agility

1 Introduction

1.1 The Need for Post-quantum Crypto Schemes

Quantum computers are the subject of ongoing research. With sufficient perfor-
mance, they will be able to break the asymmetric schemes currently in use, such
as RSA, DSA, ECDSA, and ECDH [10]. Their security is based on the prime
factorization of large numbers and on the calculation of discrete logarithms,
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respectively. For conventional computers, these are sufficiently difficult to solve
if the parameters are suitably selected. However, this will no longer be the case
when Shor’s algorithms [28] are used on a sufficiently large quantum computer.
The need for post-quantum cryptography (PQC), i.e. schemes secure enough to
withstand a large quantum computer, is therefore evident.

In 2016, the National Institute of Standards and Technology (NIST) initiated
a standardization process for PQC schemes.1 These schemes are based on mathe-
matical principles which are believed not to be vulnerable to quantum computer
attacks. Hash-based schemes including XMSS [15], LMS [20] or SPHINCS [4] are
possible candidates for post-quantum-secure algorithms. These schemes use hash
functions to sign data and each signature requires a one-time key. Therefore, the
private key contains a set of one-time keys. To record which keys have already
been used, XMSS and LMS require a state. SPHINCS does not use a state and
is therefore not considered within this work.

1.2 The Need for Usable Crypto APIs

The wrong usage of cryptographic functionality bears great risks and may lead
to the leakage of personal data or identity theft. Therefore, the usage of cryp-
tographic tools is indicated, if not for other reasons at least to be compliant
with regulations such as GDPR2. This leads to an increasing integration of
cryptographic functionality in software, including every-day applications such as
instant messaging. Thus, more and more programmers, usually from other fields
than cryptography, are using these APIs. Since these programmers are often
unfamiliar with the required cryptographic principles, they struggle with the
current APIs, which are too low-level for their needs [23]. Prior work shows that
developers encounter problems using cryptographic APIs correctly [3,23,30].
Incorrect use of cryptographic APIs leads to insecure code, which in turn leads to
an insecure application [11]. Therefore, easy-to-use APIs are playing an increas-
ingly important role. Lazar et al. [19] have analyzed the vulnerabilities listed
in the CVE database3 and found that 83% of those vulnerabilities were caused
by the incorrect use of cryptographic libraries, e.g. unsafe algorithms or hash
functions were unknowingly applied, especially when using the default values
provided by the API. Other errors included the use of weak random generators
or private keys specified in the code.

Nadi et al. [23] have carried out 4 studies to point out typical problems regard-
ing the use of cryptographic Java APIs. Problems included the time required to
read resources such as the documentation, finding the correct sequence to call
individual methods and insufficient knowledge about the domain. Similar to Acar
et al. [3], the authors have identified good documentation, which should include
examples for frequent tasks, as an important characteristic of a usable API.
Many participants also mentioned the API design itself. The developers wish for

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (2019-02-12).
2 https://eugdpr.org (2019-06-07).
3 https://cve.mitre.org (2019-03-09).
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a high-level API that allows solving frequent tasks with only few method calls.
Likewise, many developers requested tools to automatically detect faulty code
and to provide code templates.

Stateful signature schemes introduce new challenges to the developer. In con-
trast to conventional signature schemes, the state of the private key changes with
each signature. This property puts an extra burden to developers on their way
to create secure applications. Even experienced developers may struggle with
this new concept, as it differs from their experience and mental model. Our app-
roach is to design an appropriate library that is easy to use from the developer’s
perspective. As to our knowledge, current implementations of stateful signature
schemes (e.g. the XMSS implementation of Bouncy Castle4) do not automati-
cally handle the states of the keys. How and whether the state is managed at all
is entirely up to the developer, which indicates insufficient usability.

1.3 Goal and Approach

The goal of this paper is to design a cryptoagile, easy-to-use API for stateful and
stateless signature schemes, focusing on a novel approach to handle the state of
the private key.

To reach this goal, we investigate general design recommendations through
literature research and conduct interviews with software developers (experts and
non-experts) to collect a first set of requirements for our API. With these require-
ments, a prototype API for digital signatures, including the stateful scheme
XMSS(MT), is designed and implemented. We evaluate our API in multiple iter-
ations of small scale laboratory- and online-studies, improving our design with
each iteration. These evaluation steps will provide us with an initial version of
our API, ready to be used in a future, large-scale user-study.

The remainder of this work is structured as follows: we discuss related work
(Sect. 2) as well as a new API layer for non-experts (Sect. 3), introduce our
easy-to-use API for digital signatures, including stateful schemes (Sect. 4) and
evaluate our API in user studies (Sect. 5). Section 6 concludes the paper and
provides an outlook.

2 Related Work

Due to our interdisciplinary work, we discuss related work regarding stateful
signature schemes and the management of their states (Sect. 2.1), the concept of
cryptographic agility (Sect. 2.2), general recommendations for good API design
(Sect. 2.3), research aiming to improve the usability of (cryptographic) APIs
(Sect. 2.4) and methodology of online and laboratory studies (Sects. 2.5 and 2.6,
respectively).

4 https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/
provider/xmss/package-frame.html (2019-02-21).

https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/provider/xmss/package-frame.html
https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/provider/xmss/package-frame.html
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2.1 Stateful Signature Schemes and State Management

Buchmann et al. [8] describe the eXtended Merkle Signature Scheme (XMSS),
an extension of the Merkle Signature Scheme (MSS) [22]. In XMSS, as well as
in other hash-based signature schemes, the private key contains a limited set
of one-time keys. As the name implies, these one-time keys can only be used
once and therefore, only a limited amount of signatures can be performed with a
single private key. The so-called state of the private key contains the information
about which of the one-time keys have already been used. A further extension of
XMSS is XMSSMT (XMSS Multi Tree). Through the introduction of subtrees in
several layers, a practically unlimited number of signatures can be generated with
comparable performance. Both schemes (XMSS and XMSSMT) are an Internet
standard by the IETF [15].

Besides the reference implementation in C5, a Java implementation for
Bouncy Castle6 exists as a lightweight API since version 1.57 and as a provider7

implementation since version 1.58. Since we are using Java for our prototype
implementation, we use the BC provider API as the basis to implement our own
API (see Sect. 4). As of now, this is the only existing Java implementation for
XMSS(MT).

McGrew et al. [21] investigate which measures must be taken to securely
manage the states of hash-based signature schemes. They point out the danger
of cloning in particular, especially by copying a virtual machine (VM) and with
it the contained key material. A private key contained therein would then exist in
two independent instances and could be used by both without synchronization.

Their work also mentions the risk of a synchronization failure in case the
private key stored in the persistent storage fails to update at the same time or
before the private key in RAM does, e.g. due to an application crash.

The authors consider the secure use of stateful signature methods possible
in scenarios with dedicated hardware, but propose a hybrid scheme for general
use. This includes scenarios that take the occurrence of cloning into account.

The paper also presents a strategy to increase efficiency by reserving states.
The stateful private key is persistently stored n states in advance. Thus n keys
are reserved for signing. Only if all reserved keys were used, the persistent storage
would have to be accessed again.

We will take these considerations into account when designing our own API,
by measures taken either in the implementation or in the documentation.

2.2 Cryptographic Agility

In order to respond to the constantly improving attacks on cryptographic
schemes and primitives, APIs, cryptographic system components, and support-
ing libraries must be designed in a crypto-agile manner.
5 https://github.com/joostrijneveld/xmss-reference (2019-03-09).
6 https://www.bouncycastle.org (2019-03-09).
7 https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html (2019-03-

09).
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In RFC7696 [14] the agility of algorithms is described as follows: “Algorithm
agility is achieved when a protocol can easily migrate from one algorithm suite to
another more desirable one, over time”. RFC6421 [24] offers a similar definition.

Schneider described cryptographic agility in a more general way: “Crypto-
graphic agility refers to how easy it is to evolve or replace the hardware, soft-
ware, or entire information technology (IT) systems being used to implement
cryptographic algorithms or protocols (and, in particular, whether the resulting
systems remain “interoperable”)” (opening remarks at a workshop on Crypto-
graphic Agility and Interoperability [17]).

The replacement of algorithms is necessary, for example, if weaknesses are
found in the algorithms or their implementation. But also simply the age of the
algorithms and the increasing processing power of modern computers will make
the use of more advanced algorithms a necessary step [14]. A faulty protocol
design can also lead to weaknesses. However, in general, an simple exchange of
cryptographic algorithms does not solve the problem. Instead, the protocol itself
has to be adapted [14].

The crypto-agile integration of stateful schemes into IT systems poses a chal-
lenge. Compared to classical schemes, additional steps have to be performed in
order to manage the state of the private key. Our goal is to take the above men-
tioned factors into account when designing our own API, providing a crypto-agile
solution for stateful and stateless cryptographic schemes.

2.3 API Design

Several authors formulate usability principles for APIs or for systems in general
[5,13,25]. We designed our API according to the following principles, as they
best fit our use case and provide a good starting point: easy to learn, easy to
use, hard to misuse, safe default values, good documentation, easy to read and to
maintain code, easily extensible.

2.4 Usability of (cryptographic) APIs

Acar et al. [1] investigate the usability of cryptographic APIs in Python. Their
work compares 5 of such APIs, 3 of which state to have good usability. The results
show that simpler APIs usually lead to more secure code. Auxiliary functions,
e.g. for storing the key material, should also be part of the API, although often
this is not the case. Good official documentation was also considered as crucial.
If no clear documentation is provided, the developer may turn to other sources
(e.g. StackOverflow8), resulting in erroneous code [3].

Acar et al. [1] also introduced a new usability scale that better fits for the
evaluation of APIs than the System Usability Scale (SUS, [6]). This new scale
correlates with the SUS. 11 statements (see Appendix) about an API’s usability
are used to calculate a score between 0 and 100, where higher values represent
a better usability. The statements have to be rated by the participants of a

8 https://stackoverflow.com (2019-03-09).

https://stackoverflow.com
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usability study from 1 = strongly disagree to 5 = strongly agree. We make use
of this usability scale during our small-scale user-studies.

Google is developing the cryptographic API Tink9 with focus on usability.
Accordingly, the API is “secure, easy to use correctly, and hard(er) to misuse”.
Tink is the (unofficial) successor to Keyczar10. Currently, however, Tink does
not support stateful signature schemes. The design and development of such
APIs, as it is carried out in the work at hand, is therefore still necessary. To the
best of our knowledge, scientific literature on Tink, especially on usability tests
of the API, does not (yet) exist.

CogniCrypt is an extension for the Eclipse IDE [18]. It provides a wizard
for secure code generation and static code analysis to continuously ensure the
correctness of the code. While this helps the developer to create and maintain
secure code, the usability of the cryptographic API itself is not improved. In
contrast, our goal is to address the problem in an earlier phase by designing
an easy-to-use cryptographic API, independent from any IDE or platform used
by the developer. Tools like CogniCrypt may further be used complementary to
further improve the process of code creation and maintenance.

2.5 Related Online Studies

Acar et al. [1] conducted their online study using a specifically developed online
test environment which is described in detail by Stransky et al. [29]. The par-
ticipants, most of whom were acquired from GitHub11, were asked to solve a
number of cryptographic problems using a randomly assigned API. After com-
pleting the tasks, they were asked to participate in an online survey. Gorski et
al. [12] use a similar methodology, including test environment and participant
acquisition, evaluating the integration of security warnings into the API.

For our own study, we are using the same test environment as mentioned
above. While our methodology is similar, we focus on the usability of stateful
signature schemes in particular. To our knowledge, this is the first work that
examines the usability of such schemes.

2.6 Related Laboratory Studies

Scheller and Kühn [26,27] have conducted various laboratory studies to investi-
gate factors that influence the usability of an API’s methods and classes and to
compare different configuration-based design concepts. For this purpose, partic-
ipants were invited into a laboratory environment in which they were asked to
solve a number of programming tasks. Screen recordings were made to analyze
the results. These recordings made it possible to determine, for example, precise
time values required to perform various steps, such as reading a specific section

9 https://github.com/google/tink (2019-03-09).
10 https://github.com/google/keyczar (2019-03-17).
11 These were sent invitations by e-mail that had previously been extracted from git

commits.

https://github.com/google/tink
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of the tutorial or documentation, or initializing a required class. In [27] there
were three groups of 9 participants each. All groups were asked to solve a series
of tasks with a different design concept. The time required for these tasks was
analyzed and evaluated in combination with other collected information. In [26]
a total of 20 participants took part in the study. They were divided into 2 groups
of 10 participants each. For each group, a different API was provided to solve
a number of tasks. Both studies were moderated by a supervisor sitting next to
the participant during the entire execution period, giving explanations on each
task.

As mentioned before, the online studies discussed in Sect. 2.5 served as an
orientation as we use their methodology to evaluate our own API.

To summarize, we create and evaluate a crypto-agile, easy-to-use API design
for digital signature schemes, including stateful ones, using various methods and
principles described in this section.

3 A New Layer for Non-experts

There are established Crypto-APIs providing standardized access to crypto-
graphic functionality. Prominent examples are the Microsoft Cryptography API:
Next Generation12 (CNG) for MS Windows applications and the Java Cryp-
tography Architecture13 (JCA) for Java-based applications. These are used by
professional programmers to implement cryptography code in the respective lan-
guage for the given platforms.

While these APIs provide very flexible access to cryptographic functionality,
they also demand a detailed understanding of the underlying mechanisms. On
the one hand, this allows the experienced developer to make detailed decisions
on how to implement their IT security measurements; a possibility that is surely
needed when out-of-the-box solutions do not fit. On the other hand, this also
leaves much room for errors, especially when the programmer is not skilled in
the use of cryptography; errors that should be avoided, especially when out-of-
the-box solutions suffice.

In order to provide suitable cryptographic APIs for both, experts with the
need for detailed tweaking and inexperienced programmers with everyday needs,
our design consists of a new abstraction layer.

Figure 1 shows the conceptual integration of our new layer on top of the
JCA. On the right hand side, the expert user directly accesses the JCA API
as it comes with the Java Development Kit14 (JDK). On the left hand side,
the non-expert user employs an easy-to-use API that provides out-of-the-box
cryptography methods for common cryptography tasks. The easy-to-use API in

12 https://docs.microsoft.com/en-us/windows/desktop/seccng (2019-02-27).
13 https://docs.oracle.com/en/java/javase/11/security/java-cryptography-

architecture-jca-reference-guide.html (2019-02-21).
14 https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-

5066655.html (2019-02-21).

https://docs.microsoft.com/en-us/windows/desktop/seccng
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
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Fig. 1. Conceptual layer integration

turn, makes use of the JCA API. Note that the same design model can also be
built upon other underlying standard APIs, e.g. CNG.

Besides providing a solution to the above described requirement of an expert
API and to the demand for an error-proof API, this layered design comes with
some additional advantages. Firstly, programmers that are already used to (and
confident in) using the existing API (e.g. JCA or CNG) can continue to do so,
they are not forced to use or learn an additional API. Secondly, the implemen-
tation of the easy-to-use API (by expert programmers) may be based (as in the
example at hand) on an existing standard that already provides a suitable level of
abstraction, especially regarding the exchange of underlying cryptographic algo-
rithms. This way, our API inherits the cryptographic agility of that standard
(see also Sect. 4.2).

4 EasySigner API

This section describes the EasySigner API15, an easy-to-use API for digital
signatures, providing a uniform interface for stateful and stateless signature
schemes, both classical and post-quantum. A first prototype of this API, focus-
ing on stateful signature schemes, is implemented in order to conduct small-scale
usability tests (see Sect. 5). For the time being, we focus on a Java implementa-
tion of the API. We chose Java, as it is one of the most popular programming
languages16.

4.1 Requirements

Section 2 dealt with general design recommendations for (cryptographic) APIs.
These were taken into account for the design of the EasySigner API.

Additionally, the results of four interviews with software developers from
different German institutions were taken into account. These interviews were
conducted to gain a deeper insight into the specific requirements for stateful sig-
nature schemes, also providing ideas and inspirations for the required methods,
their naming and their placement. As is common in usability research, these

15 Source code available at https://github.com/azeier-ucs/EasySigner-API.
16 It was the most popular programming language in the StackOverflow developer

survey 2018: https://insights.stackoverflow.com/survey/2018/ (2019-03-07).

https://github.com/azeier-ucs/EasySigner-API
https://insights.stackoverflow.com/survey/2018/
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interviews are intended to ensure that the API design meets the requirements
and wishes of potential users.

Two of the interviewees were experienced Java developers with good knowl-
edge of XMSS(MT) and cryptography in general (both rating their own Java (J)
and crypto (C) knowledge with high or very high), working professionally with
Java for 17 and 2 years, mostly on cryptographic tasks. The other two devel-
opers are less familiar with cryptography (C: very low, J: medium) or Java (J:
low, C: high), respectively. All interviewees were acquaintances of the authors of
this paper. The participation was voluntary and no incentive was given. These
developers were chosen in order to gain insights from users with different skill
sets. We will elaborate on the interviews in the following.

Interview Conduction. After familiarizing the interviewees with the topic
at hand, they were asked about the challenges of using cryptographic APIs in
general and stateful APIs in particular. In case of the two participants that were
already familiar with the Bouncy Castle XMSS(MT) implementation, example
code was presented at this point. For the other two participants, this was done
at a later point during the interview. Here, the interviewees were asked to point
out code fragments they felt were well or badly implemented. They were asked
for example whether certain method calls appeared intuitive or whether the
interviewees were unsure about their meaning. If an interviewee had already used
the XMSS(MT) Java Provider, they could also report their own experiences.

Furthermore the interviewees were asked to write down their own ideas for an
easy-to-use API for digital signatures, this way providing ideas for method names
and required parameters as well as for the call sequence of related methods.

Interview Findings. According to all interviewees, a cryptographic API
should be easy to use, even without any knowledge of cryptography or IT secu-
rity, should provide secure default values that make it difficult to use the API
incorrectly as well as a good documentation. In the following, several aspects
are discussed in more detail:

Regarding the API’s documentation, the interviewees stated missing exam-
ples for typical use cases. Instead, Google and StackOverflow are used, often
resulting in insecure code, as already shown by Acar et al. [2].

In order to provide secure default values, usage profiles were suggested by
some interviewees. Depending on the use case, e.g. for a Certification Authority
(CA) or for code signatures, the respective usage profile contains predefined
values17 to be used by the developer. For some algorithms, suitable parameters
already exist in literature. Hülsing et al. describe XMSS(MT) parameters for the
use cases Document and Code Signing and Communication Protocol [16].

All interviewees preferred an automatic key management that does not
require any interaction with the developer. This means the update of the key
state is performed by the API with each signature. This requires the API to
interact with the persistent storage of the key material.
17 They are referred to as predefined values within the API’s documentation, since the

term profiles proved to be confusing in the first iteration of our usability tests.
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Furthermore, backup strategies and parallel signing (which are also men-
tioned by Butin et al. [9]) were discussed. These aspects will not be considered
further in this work, but will be part of future work.

Summarized Requirements. To summarize, Table 1 shows the requirements
for the EasySigner API as determined through literature research and interviews.
Additionally, the table states the source of each requirement and whether it was
integrated in our prototype implementation (see Sect. 4.2).

Table 1. Requirements for the EasySigner API

Requirements Source Prototype

Functional
requirements

Usage profiles
containing predefined
values, e.g. for key
generation

Interview Yes

Storing and loading key
pairs from various
storage formats, e.g.
KeyStore file or HSM

Interview & Literature Only
KeyStore

Automatic management
of the key material, i.e.
updating and persistent
storage with every
signature generation

Interview & Literature Yes

Reservation of states as
described in Sect. 2.1

Literature Yes

Providing support for
backups and parallel
signing

Interview & Literature No

Non-functional
requirements

Easy to use for both
experts and non-experts

Interview & Literature Yes

Good and complete
documentation,
including code examples

Interview & Literature Yes

In spite of the
automated
administration of the
stateful key, the user
should be aware that he
is working with stateful
keys and about the
resulting risks

Interview & Literature Yes
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4.2 Design

We implemented a prototype of the EasySigner API. Since we are interested
in the usability of stateful schemes in particular, only XMSS(MT) was imple-
mented. We created dummy classes for RSA and ECDSA to demonstrate how
stateless schemes fit within the API. This was also necessary to generate addi-
tional documentation and thus to be able to conduct a more realistic user-study.

We introduce a common abstraction layer for stateful and stateless signature
schemes as presented in Sect. 3, meaning the state of a key will be handled by the
API without any necessary actions from the developer. While other APIs, e.g.
Java JCA, already provide ways to exchange the used algorithms in a modular
way, we extend this ability to the exchange of stateless and stateful schemes.
Therefore, the administration of the states must be within the scope of the API.
Otherwise, additional method calls for stateful methods would be necessary. As
our research show, this is also in the interest of the interviewed developers.

Fig. 2. API design Fig. 3. API overview

For our implementation, we focus on non-expert users, trying to provide a
high level API with the priority on easy usability. A JCA/JCE provider imple-
mentation, aiming at more experienced users, will be part of future work. Figure 2
shows a first design of the API. Depending on the signature scheme in use, the
API calls the signing method for stateless or stateful schemes.

Figure 3 shows an overview of the EasySigner API. The API consists of the
main class EasySigner that contains all methods needed for signing and verifi-
cation. The class KeyManager is responsible for the management of the crypto-
graphic keys. During initialization, the EasySigner object is given a KeyManager
object, or has alternatively to be provided with the required parameters in order
to create a KeyManager object by itself. There are two types of parameters:
AlgorithmParameters and StorageParameters.
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To give an example, the code to create a new XMSS key pair, stored in a
KeyStore, looks like this:
AlgorithmParameters algorithmParameters = AlgorithmParameters.

XMSSforSmallSignatures();
StorageParameters storageParameters = new KeystoreParameters ("pathToFile",

password);
EasySigner signer = EasySigner.withNewKeyPair(algorithmParameters ,

storageParameters);

This example uses predefined values for XMSS signatures. These default
parameters ensure secure programming even for developers who lack the knowl-
edge about which parameters to choose. These parameters may change over time,
but can be renewed simply by updating the API or a corresponding configura-
tion file. Changing any code is not necessary. This will be investigated further
in future work. Nevertheless, by calling e.g.
AlgorithmParameters algorithmParameters = new XMSSParameters (20,

XMSSParameters.SHA512);

the developer regains full control of the used parameters.
For the prototypical implementation of the API, the two predefined values

XMSSforSmallSignatures and XMSSMTforFastSigning were taken from [16].
These two parameters are sufficient to test the concept of usage profiles and
their placement within the API during the user study.

If a developer needs to use a different algorithm (e.g. XMSSMT), the respec-
tive line has to be changed to
AlgorithmParameters algorithmParameters = AlgorithmParameters.

XMSSMTforFastSigning ();

The rest of the code requires no changes. This also applies to subsequent oper-
ations, e.g. verify or sign, since the selection of the algorithm or the storage
location is determined only once during initialization. A definition of the usage
profiles as e.g. String values would make it possible to change the algorithm
or parameters at runtime, without even changing a single line of code. This
showed to be less usable in our study and we decided to employ the method
demonstrated above. Further investigation of this (apparent) trade-off between
cryptographic agility and usability will be part of our future large-scale study.

In case the sign method is called, either the signStateless() or sign-
Stateful() method will be executed depending on which algorithm is used
(stateless or stateful). This is depicted in the architecture proposal in Fig. 2. To
prevent corruption of the state, for example by multi-threading, signStateful()
contains a synchronized18 block for obtaining the current key as well as updating
and storing the new key on the persistent storage. For this, the new updated
key must first be stored before the old key is used. Otherwise a synchronization
failure might occure (see Sect. 2.1).

The methods of the KeyManager class createNewKeyPair() and loadKey-
Pair() can either be called directly or by using the methods withNewKeyPair()
and withExistingKeyPair() of the EasySigner class. These are Factory meth-
ods returning so-called Singletons. This prevents the initialization of several inde-
pendent handles to the same Keypair. Once a new KeyManager is created with

18 https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
(2019-03-13).

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
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the same Keypair as an existing one, the method returns the earlier created
object. The Keypair is identified by its path.

For the StorageParameters only KeystoreParameters were implemented
in the context of this work. The use of other formats or HSMs to store the key
material will not be discussed any further.

The storage location is indicated by the StorageParameters. These can be
for example KeystoreParameters, in which case a Java KeyStore object is used
to store the key material on the hard disk. The KeystoreParameters object
therefore contains at least the path to the file and the password to the KeyStore.
For other parameters, such as the aliases for public and private keys as well as
for the certificate, predefined values are assumed. If the actual values differ, for
example from an already existing key pair, another constructor, also allowing
the specification of these parameters, may be used.

Depending on what AlgorithmParameters are passed to the KeyManager
during initialization, the KeyManager automatically creates and returns an
instance of the subclass StatefulKeyManager or StatelessKeyManager. The
main difference between these subclasses is the management of the key material.
The StatefulKeyManager ensures that the stateful key is updated and persis-
tently stored again before each signature automatically. This prevents the user
from making mistakes during the implementation of his application, which might
result in the key material not being updated correctly. Furthermore, the same
code can be executed regardless of the chosen scheme, without any adjustments
for stateful methods. Exchanging the algorithm, in our case the Algorithm-
Parameters, is enough. This supports our goal of cryptographic agility.

For the realization of the state reservation strategy (see Sect. 2.1) the meth-
ods signMultipleData() in the EasySigner class and updateKeyInAdvance()
in the KeyManager class were implemented. While signMultipleData() can be
used for both stateful and stateless schemes, updateKeyInAdvance() is mean-
ingful only with the use of stateful schemes, since otherwise no key updates are
necessary. Nevertheless, for the sake of cryptographic agility, this method should
also be available for stateless schemes, while calling it will have no effect.

5 User-Studies

To evaluate the usability of the designed API, a total of three iterations of small-
scale user-studies were performed. Two in a laboratory setting with a total of
8 participants and one online study with 9 participants. After each iteration,
the API was adjusted based on the results of the respective iteration. At the
same time, we evaluated and adjusted the tasks, test environment and survey
questions, leaving us prepared for our future large-scale study.

We conducted moderated laboratory studies. Since we had to change the
location for almost each participant and therefore had to use a mobile laboratory
setup, a non-moderated execution was not possible. The online study on the
other hand was non-moderated, so we were able to gain results for both kinds
of study. In the following, we will first present the procedures of the studies and
then discuss the summarized results in a separate section.
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Tasks. The user-study tasks were selected to test the complete functional range
of the designed API. This includes the following API functions: Generating a key
pair, storing and loading a key pair, creating a signature, verifying a signature,
and increasing efficiency by reducing disk access.

Another crucial goal was to find out whether the participants were aware of
working with stateful keys during the tasks.

For the first iteration, 4 tasks were given, each of them designed to cover at
least one of the functions above. For the sake of a more realistic scenario and
to save time, in the second iteration the same functions were tested within a
single task. For the online study that same single task was used. Only the task’s
description was modified, adding details to better fit the online scenario and to
compensate for the missing moderator.

Exit Survey. After completing the task(s), the participants were asked to
answer questions about the API’s usability. This was done to gain better insight
into the difficulties that were encountered while solving the tasks and to receive
further feedback. For the laboratory studies, this was done in form of an inter-
view. In the online study, the participants were forwarded to a survey. Besides
closed-ended questions, in which the participants could rate e.g. the correctness
and security of their code and state whether they were aware of using a stateful
scheme, they were also able to report usability issues in free text form.

In all iterations the participants were asked to rate a number of statements,
leading to a usability score (see Sect. 2.4).

5.1 Laboratory Study

In the first two iterations of the evaluation, moderated usability tests were carried
out with a total of 8 software developers. All developers had experience using
Java, varying from only 2–3 years over 6–8 years to a maximum of 17 years. The
experience with cryptography also varied from very high to almost non-existent.
Before the study, none of the developers were familiar with XMSS(MT).

Furthermore, ethical considerations had to be taken into account. There were
no ethical concerns regarding the laboratory study as the participation did cause
no disadvantages of any kind. All participants took part in our study during their
working hours with their employer’s permission. No further risks were involved.

5.2 Online Study

After the completion of the laboratory studies, an online study was carried out
to increase the number of participants and gain more significant data.

Setup. The online study was strongly based on the online studies conducted
in [1,12]. From these studies, the test environment (Developer Observatory19),

19 Developer Observatory, including setup guide, is available for download at https://
github.com/developer-observatory/developer-observatory (2019-03-09).

https://github.com/developer-observatory/developer-observatory
https://github.com/developer-observatory/developer-observatory
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including the consent form and introductory texts, was reused and only modified
according to the deviating test subject.

Since Developer Observatory was originally implemented to test Python code,
a few adjustments had to be made. In Developer Observatory the Jupyter20 edi-
tor is used, which supports various programming languages via different kernels.
For our online study the SciJava21 kernel was chosen, because it worked most
reliably during testing and allows the integration of custom JAR files.

Acquisition of Participants. Invitations to the online study were sent to
mailing lists focusing on cryptography and online forums as well as posted to
reddit boards about software, especially Java, development. As an incentive,
three Amazon vouchers at a value of 100e each were offered and randomly
assigned to three participants after the study had been completed. Initially, there
were no participants, presumably because of the required time to solve the task
(about 1,5 hours was given as an estimate in the invitation) and the incentive
not being guaranteed. Due to the lack of participants, additional invitations were
sent to students and former students of our university. As a result, a total of 9
participants eventually completed the task (together with the exit survey). This
is a sufficient amount for our pre-study, giving us a first insight into the current
state of our API. The participants showed a broad variety regarding Java and
cryptography knowledge, most of them being students or software developers.

5.3 Results

After each iteration the participants were asked to answer the API usability
score in order to compare the results.

The result of the first iteration indicates a mediocre usability with an average
of 68,06. After integrating the feedback (e.g. about naming or method placement)
into the API, a much better result could be achieved in the second iteration
with an average of 87,08. After the second iteration, only a small number of
adjustments had to be made. In the following we will present the results of our
online study in more detail. Since this was the latest study we conducted, all
previous findings had been already integrated in the API’s design, and therefore
represents our current end result.

Table 2 (see Appendix) shows the determined API usability score of the
EasySigner API. The table contains the 11 statements as described in Sect. 2.4.
The score of 72,56 is slightly above the average value of 68 [7]. However, with
a standard deviation of 12,86 there is also a strong dispersion of the results. In
the following, the individual aspects of the score are discussed.

Comprehension. Statements 1–4 were rated mostly average or negative. These
refer to the participant’s comprehension of the API. Hence, the mere use of the
API does not lead to a clear understanding of its functionality. The laboratory

20 http://jupyter.org (2019-03-09).
21 https://github.com/scijava/scijava-jupyter-kernel (2019-03-09).

http://jupyter.org
https://github.com/scijava/scijava-jupyter-kernel
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studies showed that the documentation is hardly and rather reluctantly read,
which may be a reason for the poor comprehension.

The lack of understanding of the API’s functionality also leads to the fact
that the participants were partly uncertain whether they had securely solved the
task. They answered the question about the security of their solution with an
average of 3,63/5 wherein half of the participants answered with a 3 or less.

Of the 9 participants, 6 did not realize they were working with a stateful
signature scheme, even though it was mentioned in various places in the docu-
mentation and in a console output when generating or loading the key pair. This
seems to confirm the assumption that most participants did not carefully read
the documentation.

Documentation. The documentation was consistently perceived as helpful.
With an average of 4, a satisfactory result was achieved. Two faulty examples
in the documentation were pointed out in the commentary by a participant,
explaining his mediocre assessment of the documentation.

Also the API Usability Score. clearly shows that the documentation was
perceived by the participants as very positive and helpful. They were able to
find useful help easily (statement 7: 4,22 ), helpful explanations (statement 8:
4,56 ) and code examples (statement 9: 4,56 ).

Naming and Usage. With an average of 4,89, a nearly perfect score was
achieved regarding naming. The usage of the API for solving the task was eval-
uated with an average of 4,11. Analyzing the code written by the participants
revealed that all of them had correctly and securely solved the task. As the
survey showed, the participants themselves were confident about their solution.

Error Messages/Exceptions. Any error messages that occurred were also
assessed as largely comprehensive by the participants (statement 10: 4,13, state-
ment 11: 4,5, each with a minimum of 3 ).

6 Conclusion and Outlook

In this paper, we present an easy-to-use API design for signature schemes,
introducing a novel approach to handle stateful signature schemes such as
XMSS(MT). The design is based on a literature review and findings from inter-
views, conducted with software developers (experts and non-experts). We evalu-
ate our design through small-scale laboratory and online studies, using a proto-
typical Java implementation of our API. We achieved our goal as it was described
in Sect. 1.3. We were able to achieve very good results regarding the documen-
tation and the usage of the API (ratings of the respective statements of the
API Usability Score with an average >4 out of 5). Among the participants
of the online study, however, the use of the API only resulted in a mediocre
understanding of its functions and the used algorithms (average ratings of the
respective statements ≈3 out of 5). This also includes the developers’ awareness
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about working with stateful schemes. Most participants did not realize that they
were using stateful keys. This may lead to security-critical errors. While the API
ensures the update and persistent storage of the key material, it cannot prevent
the key material from being duplicated outside the application or API. This
could result in multiple use of a single state, ultimately compromising the key
material. If the developer is not aware of this fact, he cannot assess whether or
not such a scheme is suitable for a particular application.

Therefore, future work will investigate ways to make sure the developer fully
aware of the statefulness of the schemes. This may include further improvement
of the API’s documentation or changing the API in a way that the statefulness
is not transparent to the user, while still providing a crypto-agile solution.

Throughout the paper, various aspects for future work were mentioned. We
summarize them here: (a) Investigating the possible trade-off between usabil-
ity and cryptographic agility regarding the full fledged parameterization of the
API, (b) Designing an update mechanism for the predefined values in our usage
profiles, (c) Enhancing the API to support advanced functionality such as back-
ing up the key material and perform parallel signing, (d) Transferring our key
management approach to a JCA provider implementation.

The API will also be the subject of further improvements, including more
usability tests at a larger scale. Part of these tests will be a comparison to other
cryptographic APIs, e.g. regarding the time needed to solve certain tasks. It will
be put into a larger context, being part of a comprehensive library for classical
and post-quantum cryptography methods.
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Appendix. API Usability Score of the Online Study

Table 2. API usability score of the online study.

Statement O1 O2 O3 O4 O5 O6 O7 O8 O9 ∅ σ

1: I had to understand how most of the
assigned library works in order to
complete the tasks

5 3 3 4 2 2 2 5 2 3,11 1,27

2: It would be easy and require only small
changes to change parameters or
configuration later without breaking my
code

4 2 4 5 4 4 4 3 5 3,89 0,93

3: After doing these tasks, I think I have a
good understanding of the assigned library
overall

2 1 4 2 3 3 3 3 3 2,67 0,87

(continued)
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Table 2. (continued)

Statement O1 O2 O3 O4 O5 O6 O7 O8 O9 ∅ σ

4: I only had to read a little of the
documentation for the assigned library to
understand the concepts that I needed for
these tasks

3 2 5 2 5 2 5 2 3 3,22 1,39

5: The names of classes and methods in
the assigned library corresponded well to
the functions they provided

4 5 5 5 5 5 5 5 5 4,89 0,33

6: It was straightforward and easy to
implement the given tasks using the
assigned library

3 4 5 3 5 4 5 3 5 4,11 0,93

7: When I accessed the assigned library
documentation, it was easy to find useful
help

4 5 5 4 4 2 5 5 4 4,22 0,97

8: In the documentation, I found helpful
explanations

4 5 5 4 4 4 5 5 5 4,56 0,53

9: In the documentation, I found helpful
code examples

4 5 5 4 5 4 5 4 5 4,56 0,53

10: When I made a mistake, I got a
meaningful error message/exception

4 3 5 0 4 4 4 5 4 4,13 0,64

11: Using the information from the error
message/exception, it was easy to fix my
mistake

4 3 5 0 5 5 4 5 5 4,50 0,76

Result 57,5 62,5 90 60,5 82,5 65 87,5 65 82,5 72,56 12,81
∅=average
σ =standard deviation
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27. Scheller, T., Kühn, E.: Usability evaluation of configuration-based API design con-
cepts. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013.
LNCS, vol. 7946, pp. 54–73. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39062-3 4

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

29. Stransky, C., et al.: Lessons learned from using an online platform to conduct
large-scale, online controlled security experiments with software developers. In:
10th USENIX Workshop on Cyber Security Experimentation and Test, CSET 2017
(2017)

30. Xie, J., Lipford, H.R., Chu, B.: Why do programmers make security errors?
In: 2011 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 161–164 (2011). https://doi.org/10.1109/VLHCC.2011.6070393

https://doi.org/10.1109/ECBS.2012.27
https://doi.org/10.1109/ECBS.2012.27
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/VLHCC.2011.6070393

