

Hochschule Darmstadt

- Fachbereich Informatik –

Fast Prototyping of Model Checking Exploration Algorithms

Abschlussarbeit zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

vorgelegt von

Nouri Alnahawi

Referent : Prof. Dr. Bernhard Humm

Korreferent : Prof. Dr. Klaus Frank

ii

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht

veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden

oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde

eingereicht worden.

Darmstadt, den

iii

Abstract

In the field of concurrent distributed systems, model checking has been used to verify the

correctness of these systems. However, due to state explosion, the exponential growth of a

system’s state space, it is rather difficult and challenging to apply this method and acquire

reliable results regarding a given system. Partial order reduction (POR) simplifies the

problem by restricting the verification to a reduced state space while maintaining the

soundness of properties of the system being tested.

Research scientists have been pursuing this issue during the last three decades,

developing model checking exploration algorithms based on partial order reduction, in

order to alleviate the problem as much as possible. These algorithms however, vary in their

logic and implementation, which makes it difficult to decide, which algorithms are more

efficient without thoroughly testing them. This procedure costs a lot of time and effort,

which is not desired while prototyping these algorithms.

In this thesis, we present a specially designed tool that allows developers and

researchers to further pursue this issue, yet save time, effort and costs of developing. The

tool offers a minimal standard interface for implementing algorithms, and applying them

onto simplified programs, that simulate the behavior of concurrent systems.

As a foundation to our tool, we create a multi-threaded-like environment using

transition systems, which allows testing the features of the algorithms under development

without having to apply them on real existing and functioning concurrent systems.

iv

Table of Contents

INTRODUCTION --- 1

1.1. BACKGROUND & MOTIVATION -- 1
1.2. RELATED WORK --- 4
1.3. OUTLINE -- 5

PRELIMINARIES -- 7

2.1. SOFTWARE VERIFICATION -- 7
2.2. MODEL CHECKING -- 8
2.3. TRANSITION SYSTEMS -- 9
2.4. STATE EXPLORATION AND STATE SPACE EXPLOSION -- 10
2.5. PARTIAL ORDER REDUCTION -- 13
2.6. FAST PROTOTYPING --- 14

REQUIREMENTS ANALYSIS -- 16

3.1. FAST PROTOTYPING TOOL -- 17
3.2. INPUT -- 19
3.3. FUNCTIONALITY -- 20
3.4. OUTPUT --- 22
3.5. NON-FUNCTIONAL REQUIREMENTS -- 22

CONCEPT & DESIGN -- 25

4.1. INPUT LANGUAGE -- 26
4.2. REPRESENTATION OF TRANSITION SYSTEMS -- 29
4.3. ALGORITHM INTERFACE--- 33

IMPLEMENTATION -- 35

5.1. START-UP -- 35
5.2. READING AND PARSING INPUT --- 39
5.3. BUILDING TRANSITION SYSTEMS --- 46
5.4. APPLYING ALGORITHMS --- 48
5.5. FORMATTING OUTPUT --- 56

EVALUATION --- 58

6.1. SETUP -- 58
6.2. EXPERIMENTS --- 59
6.3. EXTENDING AND MAINTAINING THE TOOL -- 64

CONCLUSION --- 69

7.1. SUMMARY -- 69
7.2. PERSPECTIVE -- 70

BIBLIOGRAPHY --- 72

APPENDIX A --- 74

APPENDIX B --- 79

APPENDIX C --- 85

1

Chapter 1

Introduction

The first chapter provides an overview in respect to the background of this thesis, as well

as some of the related work in that field. It also lists some of the reasons and motives for

the work at hand, as further research in the same area.

1.1. Background & Motivation

Over the last three decades, the usage of computerized and computer based systems has

been rapidly increasing all around the globe. Day by day we become more dependent on

instruments and functionalities related to digital and computational breakthroughs, which

unarguably has made our lives much easier and more efficient in many aspects. Control

functions in modern cars, cruise controls, mobile phones, medical devices etc. are almost

solely able to function due to technological inventions that are also computer based.

In most cases, these devices utilize artificial intelligence computer based systems

that are more often than not connected to each other. It has become nearly impossible for

a system to function without being connected to another. Furthermore, a lot of these

systems work concurrently together, such as multi-threaded servers, and embedded car

control units that perform quasi-parallel tasks (multitasking). These systems are steadily

growing in complexity, and are being distributed over several processing units and

networks, making them a vital and non-expendable part of many safety-critical systems.

2

In the light of these clear facts, many aspects regarding the correctness, safety and

security of critical information technology systems pose the questions: How do we verify

the trustworthiness and reliability of these systems? How can we assure that these

constantly growing systems are still able to perform their duties without jeopardizing the

security of the systems? Thus a main challenge for the field of computer science is to

provide formalisms, techniques, and tools that will enable the efficient design of correct

and well-functioning systems despite their complexity [MIT16].

Model checking, also known as property checking, is a technique for verifying finite

state concurrent systems. It has a number of advantages over traditional approaches that

are based on simulation, testing, and deductive reasoning. In particular, model checking is

automatic and usually quite fast. Also, if the design contains an error; model checking will

produce a counterexample that can be used to pinpoint the source of the error. The method

developed by Edmund M. Clarke, Randal Bryant, E. Allen Emerson, and Kenneth

McMillan, which was awarded the 1998 ACM Paris Kanellakis Award for Theory and

Practice, has been used successfully in practice to verify real industrial designs [MIT16].

The main challenge in model checking is dealing with the state space explosion

problem. This occurs in systems with many components that can interact with each other

or systems with data structures that can assume many different values. In such cases the

number of global states can be enormous. Researchers have made considerable progress

on this problem over the last ten years [MIT16]

Using special algorithms based on partial order reduction, researchers have been

able to drastically reduce the size of the state space in a given system, so that the state

explosion problem is hopefully no longer an obstacle standing in the way of complete and

sound verification of concurrent distributed systems.

3

Nonetheless, these recently developed algorithms, some of which are still being

analyzed, tested and enhanced, may deliver different results regarding efficiency

depending on their logic and implementation. Even though they are based on partial order

reduction, there is still plenty of room for further research and improvement.

Throughout this thesis, we present a tool that offers a standard interface for

implementing and testing these algorithms under development, as well as already existing

ones. Making it possible to quickly see the results that a certain algorithm can deliver, when

applied to a simplified user defined concurrent system utilizing the concept of transition

systems. This tool aims to help researchers fast prototype their own ideas and compare it

to other known works in this field without having to design or implement a standalone tool

or program just to test one algorithm. Furthermore, this tool provides an environment for

executing common instructions that are to be found in almost all concurrent systems, such

as simple arithmetic operations that have access to shared resources. Focusing on changing

the values of variables used by several components of the systems, e.g., threads, and

monitoring how these changes affect the flow of the program running the system,

especially when these values are used in control flow statements such as loops and

branching.

The end result of this work will demonstrate that this tool is able to read example

programs, accordingly build representative transition systems, and apply a model checking

exploration algorithm that delivers statistics regarding the state space of the given example

program.

4

1.2. Related Work

One of the most known names in the field of model checking is Edmund M. Clarke, who,

with his Ph.D. student E. Allen Emerson, first introduced the idea of using model checking

as a verification technique for finite state concurrent systems in the early eighties. His book

Model Checking [CGP99] is considered to be the first comprehensive presentation of

theory and practice of model checking [MIT16]. His opinion on the state-explosion

problem being the most important problem in Model Checking, which he stated in his

article The Birth of Model Checking [Cla08], was also featured in the book 25 Years of

Model Checking [GV08] among other articles from several pioneers in this field, e.g., E.

Allen Emerson’s The Beginning of Model Checking: A Personal Perspective, in which he

emphasizes the importance of model checking and verification [Eme08].

Partial order reduction was introduced in the early nineties by Doron A. Peled, who

suggested to reduce the state graph used for model checking by applying existing model

checking algorithms to the reduced state graph rather than on the larger full state graph of

the program [Pel93]. Patrice Godefroid also contributed to the partial-order methods with

a new approach to the state-space explosion problem [God94]. The foundation for the

design and architecture of our tool is however based on dynamic partial order reduction

introduced by Cormac Flanagan and Patrice Godefroid. They presented a new approach

based on initially exploring an arbitrary interleaving of the various concurrent

processes/threads, and dynamically tracking interactions between these to identify

backtracking points where alternative paths in the state space need to be explored.

Furthermore, using examples of multi-threaded programs where the new dynamic partial-

order reduction technique significantly reduces the search space, even though traditional

partial-order algorithms are helpless [FG05].

A survey of model checking tools was published by the University of Virginia,

comparing some of the most common tools to date [SA06]. Another relevant work was

5

published by the Université de Sherbrooke in Canada, offering an overview for six different

tools in addition to a thorough analysis of each one of them [FF+10].

It is to be taken into consideration that the related works provide the basis for the

theoretical understanding of the concepts of model checking, (dynamic) partial order

reduction and model checking tools. However, the purpose of the tool presented in this

thesis is solely to provide a platform for implementing POR-algorithms and testing their

efficiency, not verifying concurrent systems using the model checking and POR methods.

1.3. Outline

This thesis is divided into seven chapters, the first of which being the Introduction. In the

second chapter we will focus on the preliminaries and some of the basic concepts necessary

for understanding the theory behind model checking and partial order reduction. We will

also shed some light on transition systems, and how they are an important corner stone in

state exploration, leading us eventually to the idea of fast prototyping.

 After getting an elaborate idea of the theory, we move on to Chapter three, where

we deal with the requirement analysis of the assignment, i.e., the tool we developed,

focusing on the demands and requisitions, and how they were systematically categorized

and prioritized for the development.

 Chapter four handles the basic concept and the design of the tool. This includes the

decisions made regarding the technologies used in the tool such as the programming

language and the run time environment. It also describes the chosen architecture and

components of the tool.

6

 Having laid down the foundations for the design, we move on to Chapter five,

where we take a closer look at the actual implementation and the most important code

sections of the system components.

 Finally we analyze the results we have achieved and evaluate the tool in Chapter

six, moving on to the final summary in Chapter seven.

7

Chapter 2

Preliminaries

In this chapter, we introduce the basic definitions and concepts of software verification,

model checking and state exploring using partial order reduction. Since the algorithms that

can be implemented in the tool take as input a transition system, we will also go through

the basics of transition systems covering up the most important theory concepts necessary

for comprehending, how the above mentioned concepts work together to build up the

components of our tool.

2.1 Software Verification

In the field of software engineering, verification and validation (V&V) is the process of

checking that a software system meets certain specifications and that it fulfills its intended

purpose.

 Barry Boehm succinctly expresses the goal of system verification [Boe89], being

the answer to the question: Are we building the product right? In other words, software

verification is ensuring that the product has been built according to the requirements and

design specifications.

 There are a lot of different methods for system verification. Some of them are more

reliable than others, and are also used in the industry. Model checking has proved to be one

of the best general verification techniques that explores all possible system states in a brute-

force manner.

8

2.2 Model Checking

Both the idea and the term model checking were introduced by Clarke and Emerson in

1981 [CE81], proposing a method to establish that a given program meets a given

specification where:

 The program defines a finite state graph1 M.

 M is searched for elaborate patterns to determine if the specification f holds.

 Pattern specification is flexible.

 The method is efficient in the size of M, and ideally, f.

 The method is algorithmic and practical.

Over the last 30 years, Clarke, Emerson and others in the field managed to get model

checking into a concrete state, where model checkers are able to verify protocols with

millions of states and hardware circuits with 1050 or more states [Eme08].

 The work of Baier and Katoen in their book Principles of Model Checking [BK08]

provides a clear and simple definition of the concept of model checking.

Definition 1 (Model Checking). Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically checks whether this

property holds for (a given state in) that model.

1 P.11 Definition 3 Finite State Machine

9

The described model checking process consists of three phases according to Baier and

Katoen [BK08]:

 Modeling phase: Modelling the system using a modelling description language and

formalizing the property to be checked.

 Running phase: Running the model checker for verification of the system property.

 Analysis phase: Expecting three possible outcomes. The specified property is either

valid in the given model or not, or the model turns out to be too large to fit within

the physical limits of the computer memory.

In order for us to be able to utilize the concept of model checking, we need a

standardized way of modelling a given system. This leads us to a state graph like class of

models to represent hardware and software systems, which is known as Transition System.

2.3 Transition Systems

The formal definition of a transition system introduced by Baier and Katoen [BK08],

although worth mentioning, differs from the one used in this thesis. Our notion of transition

systems is borrowed form Saissi et al. [SBM+13]. The main characteristics of this notion

are that transitions are deterministic and that there exists a unique initial state for every

transition system. As the used algorithms are stateless, we additionally require transition

systems to be acyclic [Met14].

Definition 2 (Transition System). A transition system is a triple TS = (S, s0, T) where S is

a finite set of states, s0 𝜖 S is the initial state of the system, and T is a finite set of transitions

such that for all t 𝜖 T, t: S ⇀ S, i.e., transitions are partial functions from S to S, and for

all s1,..., sn+1 𝜖 S and any finite sequence t1…tn 𝜖 T such that ti(si) = si+1, s1 ≠ sn+1.

10

For a transition system (S, s0, T), t 𝜖 S, and s, s´ 𝜖 S, whenever t(s) = s´ is defined, s´ is

called the resulting state of t at s and we write s
𝑡1
→ s´. A transition t 𝜖 T is enabled at a state

s 𝜖 S if there exists a resulting state of t at s. A state for which no transitions are enabled is

called a deadlock. We write enabled(s) for the set of enabled transitions of s, i.e.

enabled(s):= {t 𝜖 T: ∃s´ 𝜖 S.s´= t(s)} [Met14].

 In order to be able to apply the designed POR-algorithms onto a transition system,

and to optimize the exploration of the state graph, we require that transitions cannot disable

other transitions and call transition systems that satisfy this requirement separated. Each

statement of the program is modelled by a single transition. A transition t which

corresponds to a statement stmt is enabled at a state s if and only if the transition

corresponding to the preceding statement of stmt has s as a resulting state, or if t models an

initial statement of the program and s is the initial state of the transition system [Met14].

 In chapters four and five, we will take a closer look at the details of modelling a

transition system, and how the transitions correspond to the statements of a given program

in order to use the transition system for applying an algorithm. It is also to mention, that

we are using explicit state model checking, as opposed to symbolic model checking [EP02].

2.4 State Exploration and State Space Explosion

In order to understand, what state exploration means, we need to first understand what a

finite state machine (FSM) is, and what it consists of. The formal definition of an FSM by

Katrin Erk and Lutz Preise [EP08] offers a very clear and comprehensible explanation.

11

Definition 3 (Finite State Machine). A finite state machine, or a finite sequential machine

(FSM) is a five-tuple A = (K,Σ,𝛿, s0, F) where:

 K is a finite set of states.

 Σ is a finite alphabet.

 𝛿 : K Χ Σ ⟶ K are the transition functions.

 𝑠0 𝜖 K is the initial state.

 𝐹 ⊂ K is the set of final (accept) states.

A state describes the status of the machine at a certain point in time, and has information

that is defined according to the type of the system.

Considering the similarities between transition systems and state graphs, we can

assume that various types of systems can be modelled using transition systems. In this

thesis we focus on modelling finite-state systems to use them for the representation as

transition systems. However, having a finite number of possible states does not necessarily

mean that the number of these states, thus the number of possible states in a transition

system that correspond to the program’s state graph, is possible to determine using formal

methods. For many practical systems, the state space may be extremely large, which is a

major limitation for state-space search algorithms such as model checking.

 A very important term in the area of state exploration is traversing, i.e., given a

startup position in a state graph (usually the initial state) we move forward to the next

available state while respectively executing the program statements connecting two states.

As explained in the last section, transitions correspond to statements, therefore we will be

referring only to exploring transition systems from now on, ignoring the small formal

differences between state graphs and transition systems. However, bearing in mind that the

states in a transition system are dynamically calculated, i.e., a new state results of the

12

execution of an enabled transition at a preceding state. States are not pre-calculated and do

not exist at the beginning of the exploration, only the initial state.

Examining the small example (Fig.2.1) of a graphic representation of a transition system,

we can easily see how state exploration functions. Starting at s0 we apply (execute) the

transition t1 and therefore get the next state s1. When two transitions are enabled at a

certain state, e.g., s1 with t2 and t3 we logically have to execute both resulting in two new

states s2 and s3.

How is state exploration connected to state space explosion? Baier and Katoen

[BK08] explained the problem in very comprehensive words using this example:

A program graph with ten locations, three Boolean variables and five bounded integers

(with domain in {0... 9}) has 10·23·105=8,000,000 states. If a single bit array of 50 bits is

added to this program graph, for example, this bound grows even to 800,000·250! This

observation clearly shows why the verification of data-intensive systems (with many

variables or complex domains) is extremely hard. Even if there are only a few variables in

a program, the state space that must be analyzed may be very large.

 Another important aspect discussed by Baier and Katoen [BK08] is Parallelism.

Considering the previous calculations for a single-threaded system, the state space of a

Figure 2.1: Example of a Transition System.

t1 t2

t3

S0 S1 S2

S3

13

system with n threads where n >= 1, or processes, is the Cartesian product of the state

spaces of the single components, i.e., threads, which is more than enough proof that the

state explosion problem is not to be taken lightly.

2.5 Partial Order Reduction

In this thesis, we will not attempt to fully understand partial order reduction, nor will we

thoroughly discuss the characteristics of this concept. However, we will briefly explain the

main idea so that we can have a better understanding of the importance of POR in model

checking and system verification.

 As we have learned in the former sections, the state-explosion problem is real, and

it can be a show stopper when it comes to exploring a transition system, but first, we will

take a look at the following example (List.2.1) with two threads T1 and T2, both of which

consisting of two program statements with one shared variable x and two local variables y

and z.

T1{ T2{

1 t1.1 : x := 2; t2.1 : z := 6;

2 t1.2 : y := 3; t2.2 : x := 0;

} }

Listing 2.1: Program Order Example with two Threads.

At first glance, it is clear to see that the possible orderings for the execution of the program

statements is as follows:

 Variation A: t1.1→ t1.2→ t2.1→ t2.2

 Variation B : t2.1→ t2.2→ t1.1→ t1.2

14

 Variation C : t1.1→ t2.1→ t1.2→ t2.2

 Variation D : t1.1→ t2.1→ t2.2→ t1.2

 Variation E : t2.1→ t1.1→ t2.2→ t1.2

 Variation F : t2.1→ t1.1→ t1.2→ t2.2

A total of 6 possible paths to reach the end of the program, which is easy to calculate using

formal mathematical methods. But we notice that both variables y and z do not affect the

outcome of the whole program, since they are local to their respective threads. On the other

hand, variable x is changed in both threads, which makes it important to find out, under

which circumstances the order of execution is changed, and thus changing the final value

in the variable x.

 The aim of partial order reduction in a nutshell, is to reduce the number of possible

orderings that need to be analyzed in a transition system, so that the state space is also

reduced. Applied on our small example above, we can omit the interleaving paths, where

only the order of the statements affecting y and z is involved, not that of x. In doing so, we

can reduce the number of possible paths to only two. One path has x changed in T1 first,

and vice versa. Put on a much larger scale, e.g., systems with hundreds of threads, each of

which working with shared resources that can definitely affect each other, it becomes clear,

why we need POR to overcome the state space explosion problem.

2.6 Fast Prototyping

Fast prototyping is a common term used to describe a certain process, by which one can

quickly asses and evaluate a product, which is only a prototype in the first phase of the

15

production. Similarly we will refer to our work as Fast Prototyping, since we aim to

quickly evaluate the quality of the prototypes of the developed POR-Algorithms.

16

Chapter 3

Requirements Analysis

DEEDS2, which stands for Dependable, Embedded Systems and Software, is a research

facility in the department of computer science at the Technical University of Darmstadt.

They offer regular study program courses held by their professors and Ph.D. seeking

students, as well as research studies in several areas of computer science, focusing on

design and analysis, and assessment. The development of a fast prototyping tool was

proposed by Patrick Metzler and Habib Saissi in order to support their work on partial order

reduction in the field of distributed systems.

 In this chapter, we will examine the prerequisites and requirements for developing

this tool, as a topic for a Bachelor/Master project and thesis3. The process of requirement

analysis was conducted according to the rules of modern agile software engineering,

carried out in weekly iterations parallel to the actual development of the tool, to satisfy the

desired end results requested by the research facility. These requirements divide into two

categories, functional and non-functional requirements, the latter being of more

significance for both Metzler and Saissi, as we will see in the following sections.

 The development was documented using the UML-tool MagicDraw 18.24, which

utilizes the standards of the Unified Modelling Language (UML2)5.

2 https://www.deeds.informatik.tu-darmstadt.de/deeds/ [Accessed: 28.02.2016]
3 https://www.deeds.informatik.tu-
darmstadt.de/fileadmin/user_upload/GROUP_DEEDS/teaching/msthesis/DEEDS_ThesisProposal_1_habib
_.pdf [Accessed: 28.02.2016]
4 http://www.nomagic.com/products/magicdraw.html [Accessed: 28.02.2016]
5 http://www.uml.org/ [Accessed: 28.02.2016]

https://www.deeds.informatik.tu-darmstadt.de/deeds/
https://www.deeds.informatik.tu-darmstadt.de/fileadmin/user_upload/GROUP_DEEDS/teaching/msthesis/DEEDS_ThesisProposal_1_habib_.pdf
https://www.deeds.informatik.tu-darmstadt.de/fileadmin/user_upload/GROUP_DEEDS/teaching/msthesis/DEEDS_ThesisProposal_1_habib_.pdf
https://www.deeds.informatik.tu-darmstadt.de/fileadmin/user_upload/GROUP_DEEDS/teaching/msthesis/DEEDS_ThesisProposal_1_habib_.pdf
http://www.nomagic.com/products/magicdraw.html
http://www.uml.org/

17

3.1 Fast Prototyping Tool

The main idea was to develop a framework for implementing, testing, and comparing

different POR-algorithms. The first step was establishing a system model (design) focusing

on three main components that build up the tool:

 Input: Example programs in a pre-defined input language that are represented as

transition systems inside the tool (Chapter 2.3, Definition of Transition System).

 Functionality: Implementing state space exploration algorithms, and applying them

onto the transition systems (Chapter 2.4, State Space Exploration).

 Output: Statistics regarding the execution of the algorithms.

On the one hand, it is important that the tool accepts a diversity of POR-algorithms

using a standardized way of implementation; on the other hand, the tool should also be

capable of applying them to example programs with different size, complexity, and

structure. The result of the tool is an executable program that delivers statistics regarding

the state space exploration of the transition systems.

 As previously mentioned, the meetings with Metzler and Saissi were held on

weekly basis. Due to this weekly iteration concept of developing the tool, the goals set after

each iteration were updated to suit the current state of development, and to adapt to change

requests. This agile method also allowed coping with unexpected and undesired effects,

such as delay in the development or deficient understanding of the problem at hand. This

way of work was carried out consistently until the end of the project.

18

 The following state machine analysis diagram6 (Fig.3.1) represents the first system

model describing the basic flow, as a result of the first analysis iteration:

Figure 3.1 Initial Analysis.

 It was not necessary to perform a use case analysis applying use case diagrams or

story cards etc., since there is only one user related use case, being:

 Start program with specified input file(s) and a specified algorithm.

All other parts in the tool were developed according to the requested specification, which

we will discuss in the following sections.

6 http://www.uml-diagrams.org/state-machine-diagrams.html [Accessed: 29.02.2016]

http://www.uml-diagrams.org/state-machine-diagrams.html

19

3.2 Input

The first step in the analysis phase was to determine the type of input to be used for the

tool. Metzler and Saissi suggested using standard .txt files to feed the tool with example

programs. These example programs should be suitable for representing programs with

multiple processes or threads, performing simple arithmetic operations on variables, and

also containing common control flow structures, in order to simulate the deterministic and

the multithreaded behavior in a distributed system.

 The emphasis for the input was laid on the branching and looping concept. The

given program should support both sequential and non-sequential execution of the program

statements, which allows for different paths leading to the end of the program, depending

on the decisions made along the way. These requirements can be summed up as follows:

 Input as .txt files.

 Each .txt file contains one program with one or more threads.

 Each thread contains program statements that are independent of other threads.

 The program is written in a pre-defined programming language, which is to be

created by the developer.

 The programming language should support the following aspects:

o Multi-threaded program code.

o Local, and constant identifiers with initial value and length, which can be

accessed by all threads.

o The data type INTEGER is used for the value and length of identifiers.

o Identifiers can be simple Variables or indexed Arrays.

20

o A threads consists of a main block containing other statement blocks.

o A statement can be either Atomic, Conditional, or a Loop.

o Atomic statements are assignments.

o Conditionals and loops use Boolean expressions to evaluate the condition.

o Boolean expressions support Equals, Greater, and Less.

o Arithmetic operations support Addition, Subtraction, Multiplication,

Division, Modulus, Parentheses and Precedence Rules.

Metzler had defined his own input programming language in his Master thesis on partial

order reduction [MET14], which was offered as basis for the new language used in this

project.

3.3 Functionality

Naturally, having a defined input language does not suffice for the tool to function.

Therefore, it was just as important to decide, what the next step is.

 First of all, the tool should be able to read the input (example programs), and

transform it into a transition system consisting of program statement. The transition system

is then saved in the tool memory to be used later on by the state space exploration

algorithm. The algorithms on the other hand should be implemented in the tool, so that they

can be applied onto the existing transition system. To manage the transition system, we

also had to consider saving variables and their values, and maintaining the order of the

program statements in addition to all possible branches using a program counter.

21

 The functional requirements were eventually described as follows:

 Tool can read and parse given example programs (.txt files).

 Tool should recognize wrong input and notify user accordingly.

 Tool can extract program statements from the given examples.

 Tool should differentiate between the types of program statements as specified in

the input language.

 Tool should differentiate between the types of identifiers as specified in the input

language.

 Transition system should be represented identical to its formal definition.

 Transition system offers methods to be used by algorithms.

 Transition system allows algorithms to dynamically execute program statements

using suitable methods. The methods apply and isEnabled must be implemented in

transition systems.

 Program memory is simulated within the tool to keep track of changes in variables

and program counters.

 Tool can apply any implemented algorithm onto any correct example program.

 Algorithms calculate states dynamically for a transition system, and calculate

statistics based on the number of visited states and reached Deadlocks.

 The method runAlgorithm must be implemented in algorithms.

 Only the algorithm Full Search (Exhaustive Search) is to be implemented by the

developer.

22

3.4 Output

The final main component of the tool was requested to be the output. There were several

possibilities for representing the output of the tool; however, our biggest concern was the

content of the output, and not its final representation on the screen. The most important

aspect in regards to the content of the output was a clear and understandable statistic

overview regarding the execution of an algorithm onto the given example programs.

 The desired output was decided to be as follows:

 Formatted output as text in console (terminal).

 Statistics regarding algorithm execution containing:

o Number of applied (executed) transitions.

o Number of visited (dynamically calculated) states.

o Number of unique states.

o Number of all deadlocks.

o Number of unique deadlocks.

3.5 Non-Functional Requirements

Even though the functional requirements are of great importance, in order for the tool to

work, the non-functional requirements were actually the key and most important requisites

in the development. The tool is supposed to be used by scholars in the research, to test and

optimize newly created POR-algorithms, which means, that the tool can, and will be

maintained and expanded to suit the needs of the developers. To achieve this goal, certain

criteria must be met.

23

 Some of these demands were non-negotiable and had to be accepted as requested.

Other demands were taken into consideration, and we payed extra attention to the basic

rules of software engineering and design, so that the tool can be managed and maintained

in the future.

 The most important non-functional requirements are:

 Tool is written in object oriented C++11 and compiled using GNU GCC7.

 Tool executable runs on Unix/Linux based systems.

 Git8 repository for version control.

 Input Language is extendable and adaptable in its definition and description.

 All components are implemented as classes to allow easy future extension and

adaptation.

 Use of meaningful naming conventions and standard programming guidelines.

 Tool supports changing and extending the input language in its component design,

which requires the appliance of Separation of Concerns [Ern04] in the design of

the classes.

 Each thread generates a unique transition system with its own program counter.

 Transition system consists of a list of lists of transitions, and an initial state with an

initial memory.

 Transitions can independently evaluate their program statements.

7 https://gcc.gnu.org/ [Accessed: 02.03.2016]
8 https://git-scm.com/ [Accessed: 02.03.2016]

https://gcc.gnu.org/
https://git-scm.com/

24

 Memory is simulated using a C++ indexed array containing all program counters

respectively, and all the variables in the given program.

 A standard interface for implementing further algorithms with uniformed methods

that can be overridden.

Further details regarding the design concept and the actual implementation will be

discussed in the following chapters.

25

Chapter 4

Concept & Design

With the requirement analysis at hand, it was rather simple to find the main components

for the tool, and to decide, what the architecture driver is, which was of great assistance for

laying down the design of the software.

 According to the concept desired by Metzler and Saissi, it was more important to

design the tool with the focus on the maintainability and adaptability, yet the core

functionality of the tool had to be simple and comprehensible, so that other researchers can

understand how it works, without having to dig deep inside the code. Choosing C++ as a

programming language for the tool was of great advantage, since C++ supports almost all

the modern object oriented programming features, as well as the old procedural aspects of

C; as it was necessary at certain points, to have full control of the behavior of each

component of the tool. The run time environment was set to be Unix/Linux based systems,

as mentioned in Chapter 3.5.

 The result of the first iteration was, as expected, a rough design consisting of three

main components that actually correspond to the requests of Metzler and Saissi. These

three components are:

 Front-end: Component responsible for reading the example programs and

extracting the program statements for further use.

 Middleware: Component responsible for generating transition systems using the

extracted program statements, and also applying algorithms onto them.

 Back-end: Calculating statistics acquired from the algorithm execution, formatting

the statistics and printing them out on the screen, or writing them into a file.

26

The following component diagram9 (Fig.4.1) represents the above mentioned components:

4.1 Input Language

Considering the demands on the input language, and the language offered by Metzler from

his Master thesis as basis for the new one, we ascertained that the new language must

preserve its grammatical characteristics. Most importantly, the grammar had to support

recursion and empty rules, in order to allow relatively elaborate and meaningful

programming structures.

 The theoretical grammar (language description) was defined according to the rules

of context free languages10. This type of grammar is suitable to our purposes for many

reasons, mainly because it allows defining relatively complex structures, and because it’s

easy to implement using the common parsing concepts.

9 http://www.sparxsystems.com/resources/uml2_tutorial/uml2_componentdiagram.html [Accessed:
03.03.2016]
10 https://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html [Accessed: 03.03.2016]

Figure 4.1 Component Diagram.

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_componentdiagram.html
https://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html

27

A context free grammar consists of four parts:

 Set of terminal symbols (the alphabet of the language).

 Set of non-terminal symbols (place holders).

 Set of productions or rules for replacing the place holders with the actual language.

 A start symbol.

However, it is of utmost importance that the grammar doesn’t contain any left recursion or

any ambiguous rules, so that it could be perfectly utilized by a parsing tool. Fig.A.1

(Appendix A) shows how the grammar of the language is defined. However, this grammar

is a representation of the language definition in its final state. Throughout the

implementation, the grammar was iteratively extended with more rules and tested

accordingly to assure the correctness of its semantics. List.A.3 shows an example of an

input file containing two threads (Appendix A).

 Logically, the defined input language has to be understood by the tool; In other

words, a parsing11 component is needed. Since there are several parsing tools available for

free use, we decided not to implement a parser from scratch, since it would not offer any

additional possibilities compared to the already existing tools, which are used in a variety

of industrial products.

Bison12, a free general purpose parser designed by the GNU project, was the best

choice for our tool. Bison supports C++ implementation utilizing classes and object

oriented concepts. It is also perfect for defining context free grammars, since it supports

11 http://dictionary.reference.com/browse/parsing [Accessed: 03.03.2016]
12 https://www.gnu.org/software/bison/ [Accessed: 03.03.2016]

http://dictionary.reference.com/browse/parsing
https://www.gnu.org/software/bison/

28

LR-parsing13. More precisely, Bison can be implemented as an LALR(1)14 bottom-up

parser15 that uses a shift/reduce stack16 to parse the input files (program code). LALR(1)

stands for Look-Ahead Left-to-Right Rightmost Derivation where 1 is the number of the

look-ahead items.

However, Bison is not a stand-alone tool. Surely it has the required logic to parse

and check the semantic correctness of a given input, but it needs a so called Tokenizer, also

known as Scanner, for the lexical analysis17. Bison recommends Flex18, a lexical analyzer

that basically goes through the given text, sending pre-defined tokens to Bison, which in

turn uses these tokens during the semantic analysis phase. Flex is thus used as a lexical

scanner to find and identify correct lexical terms in the code, and pass them over to Bison.

The biggest advantage of using Flex is its compatibility with both Bison and C++. Fig.A.2

(Appendix A) displays the tokens defined to be used in Flex.

 Now that we have the grammar of the input language, the scanner, and the parser

of choice, we need to join them. The examples offered on the Bison website, recommended

using a driver class to encapsulate the scanner, and to control reading and parsing the input.

The class diagram (Fig.4.2) shows the representation of the mentioned components as

classes.

13 https://en.wikipedia.org/wiki/LR_parser [Accessed: 04.03.2016]
14 https://www.gnu.org/software/bison/manual/html_node/Language-and-Grammar.html#Language-
and-Grammar [Accessed: 04.03.2016]
15 http://www.tutorialspoint.com/compiler_design/compiler_design_bottom_up_parser.htm [Accessed:
04.03.2016]
16 http://sites.tufts.edu/comp181/2013/10/06/shift-reduce-parsing-bottom-up-parsing/ [Accessed:
04.03.2016]
17 https://en.wikipedia.org/wiki/Lexical_analysis [Accessed: 04.03.2016]
18 http://flex.sourceforge.net/ [Accessed: 04.03.2016]

https://en.wikipedia.org/wiki/LR_parser
https://www.gnu.org/software/bison/manual/html_node/Language-and-Grammar.html#Language-and-Grammar
https://www.gnu.org/software/bison/manual/html_node/Language-and-Grammar.html#Language-and-Grammar
http://www.tutorialspoint.com/compiler_design/compiler_design_bottom_up_parser.htm
http://sites.tufts.edu/comp181/2013/10/06/shift-reduce-parsing-bottom-up-parsing/
https://en.wikipedia.org/wiki/Lexical_analysis
http://flex.sourceforge.net/

29

Figure 4.2 Parsing Classes.

Also we had to consider, what to do with the parsed input, and where it goes

afterwards, in order to generate transition systems, which is the main purpose of parsing

the input. These details will be discussed in chapters 5.1 and 5.2

4.2 Representation of Transition Systems

Since our whole tool uses transition systems as basis for simulating multi-threaded

behavior and for representing programs’ state graphs, it was necessary to define a suitable

30

representation for transition systems within the tool. The most important aspects in this

regard, are the attributes (class members) and the functions (class methods) that a transition

system possesses.

 Based on the definition of transition systems (Chapter 2.3), and the definition of a

finite state machine (Chapter 2.4), we were able to derive several design classes that contain

all the needed characteristics and to modulate them according to C++ and to the rules of

object oriented design. The class diagram (Fig.4.3) provides an overview of the classes that

make up a transition system.

The main class in this group is TransitionSys, which contains information regarding

the parts that build a transition system. Each instance of this class has a name corresponding

to the input program name, and the number of processes (threads) in that program. This

class is also responsible for constructing the initial memory and the initial state of the

system, therefore, it is also connected to the classes Memory and State, which are composite

to the former. Most importantly, this class is also connected to the class Transition via

aggregation, as a transition system consists mainly of transitions. Each process in a

transition system has its own transitions (refer to input language in Chapter 4.1), which are

referenced in a C++ vector of C++ maps in the class TransitionSys. Thus, each process

owns an index in the vector transitions, and at that index exists a map (int, transition)

containing all the transition objects belonging to that process with their respective program

counters. Aside from some utility methods in the class, we have the two most significant

public methods of a transition system: getInitialState and getEnabledTransitions, the role

of which will be discussed in Chapter 5.4.

31

 As for the class Transition, it is of the same importance as the class TransitionSys,

since it contains, in each instance (object), information regarding a single transition

corresponding to the original parsed program statement. These include, in addition to the

number of the process, the program counter at the observed transition, and the addresses of

the program variables used in the transition. It also disposes of the type of the executable

transition (more details in Chapter 5.3). Since a transition is executable, it is the most

suitable place for having the logic regarding its own execution. Thus, it offers two public

methods to be used by algorithms, namely isEnabled and apply, the implementation of

which will be discussed in chapters 5.3 and 5.4. This class disposes also of several private

Figure 4.3 Transition System Classes.

32

methods necessary for the execution of a transition, such as evaluateExp and

executeTransition.

 The classes Memory and State, even though most vital for the whole concept, can

be viewed as smaller classes holding only the logic needed to perform simple attribute

changing actions. However, the class Memory provides a place to store and edit the values

of the variables and program counters in the system (refer to Chapter 3.5). In addition to

the initial memory, each state has an up-to-date snapshot of the whole memory, depending

on the changes resulting of the transition execution.

The class State was modulated according to the following definition, derived from

the definition of a transition system, which we extended to suit our demands of the tool:

A transition system is a five-tuple TS = (S, s0, T, V, P) where S, s0 and T are the same as

in the formal definition (Chapter 2.3), V is the set of all variables, and P is the set of all

process program counters in the system.

With the variables and the processes included in the definition of a transition system, we

can define a state in our system as follows:

The set of states S: V ∪ P⟶ ℕ where V ∩ P = 𝜙 is the union function of the set of all

variables and the set of all process program counters, whose members belongs to the set

of natural numbers.

Additionally we define:

s(v) = value of variable v 𝜖 ℕ at the state s.

s(p) = value of program counter p v 𝜖 ℕ at the state s.

Therefore, an instance of the class State disposes of a state number and the number of the

preceding state. In addition, a state object offers public methods for changing the values in

the memory snapshot that belongs to it. The method cloneState was explicitly requested,

33

as it is a part of POR-algorithms, and the functionality of transitions systems transition

system.

 Having all the above mentioned classes provides us with a logical and realistic

representation of a transition system with all the required attributes and functions.

4.3 Algorithm Interface

The final design decision that had to be made, was the representation of algorithms.

Bearing in mind that all sorts of POR-algorithm will be implemented using the tool, the

design of a standard interface for algorithms was pretty logical and also presupposed by

Metzler and Saissi, as mentioned in Chapter 3.5.

 The conceptualized design for the interface is rather simple, yet highly effective for

our purposes; based on the prerequisites of a POR-algorithm. With a transition system

offering public methods to be used by an algorithm throughout its execution (Chapter 4.2),

we already have a great deal of what we actually need, since all POR-algorithms require

the earlier mentioned methods to explore a transition system, and dynamically calculate

the states. The other aspect that all POR-algorithm also have in common, is computing

statistics regarding the traversal and the calculated states. The class diagram (Fig.4.4) offers

an insight to the layout of the class Algorithm.

The algorithm interface class Algorithm is a pure virtual class19, which is the C++

equivalent of an abstract class according to the rules of polymorphism20 in object oriented

19 http://en.cppreference.com/w/cpp/language/abstract_class [Accessed: 06.03.2016]
20 http://www.webopedia.com/TERM/P/polymorphism.html [Accessed: 06.03.2016]

http://en.cppreference.com/w/cpp/language/abstract_class
http://www.webopedia.com/TERM/P/polymorphism.html

34

programming. The class contains the pure virtual method runAlgorithm, which

automatically renders the whole class pure virtual, i.e. no objects can be instantiated using

this class. In order to create an instance of Algorithm, one has to define a sub-class that

implements (inherits from) Algorithm, which is the main reason for this decision; to force

developers to implement their algorithms according to the pre-given interface.

Moreover, the class contains several members and methods, essential for keeping

track of, and storing, the calculated statistics, as well as formatting the results, so that they

can be displayed on screen, or written into a file. The most important statistics are held in

the class members numberOfStates, numberOfDeadlocks etc. complying with the

requirement analysis (Chapter 3.4).

Figure 4.4 Algorithm Interface.

35

Chapter 5

Implementation

This chapter provides detailed insights regarding the actual implementation of the classes

in the tool, as well as the other utility classes that were iteratively added to the design to

support the functionality within the course of the program. Additionally, we will examine

the algorithms implemented, according to the tasks they carry out, and to the component

they belong to. The most important aspects of the implementation can be categorized into

five sections; start-up, parsing the input, generating transition systems, applying algorithms

and formatting the output statistics.

5.1 Start-Up

The tool was set to be a console-application with one executable file that takes one or more

input files as program arguments, in addition to the algorithm that should be applied on the

given input, which will be further examined in the evaluation chapter (chapters 6.1 and

6.2).

The first class to be initialized, is the class Control (Fig.5.1).

Figure 5.1 Class Control.

36

The following sequence diagram21 (Fig.5.2) demonstrates the program course in a

simplified manner, yet sufficient for having an idea regarding the interaction between the

class objects, and the chronological order of that interaction. It also provides information

regarding the call order of the functions.

21 http://www.sparxsystems.com/resources/uml2_tutorial/uml2_sequencediagram.html [Accessed
11.03.2016]

Figure 5.2 Parsing

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_sequencediagram.html

37

Its only object instance is dynamically instantiated in the main function of the executable

FastPrototyper.cc (Appendix B.1), which passes the program arguments as parameters into

the class constructor. The constructor calls the method parseArguments in order to extract

the given parameters and store them in their respective data containers. The program is

then started with the method run (List.5.1), which takes care of the rest of the program

course as follows:

void Control::run()

{

 for(unsigned int files = 0; files < exampleFiles.size(); ++files)

 {

 selectAlgorithm();

 if(!driver.parse (exampleFiles[files]))

 {

 transitionSystem->setUpSys();

 selectedAlgorithm->runAlgorithm(transitionSystem->getInitState());

 std::cout << formatter->showStatistics() << std::endl;

 }

 else

 {

 std::cerr << "Failed to parse input!\n";

 exit(1);

 }

 cleanUp();

 }

}

Listing 5.1 Method run of Class Control.

The for loop iterates over all given input files, doing the same for each one of them.

However, we can choose only one algorithm per program-run as we can only pass one

algorithm argument at program-start. The structure chosen can be extended with a

switch/case statement or similar constructs when more algorithms are implemented.

The class control calls the driver, which in turn reads the input files (Chapter 5.2),

parses them, and stores the extracted information temporarily until the method setUpSys

from the class TransitionSys is called to generate a transition system (Chapter 5.3) for the

38

currently active input file in the for loop. Afterwards, the method runAlgorithm of the

selected algorithm is called to execute the algorithm onto the generated transition system.

Finally, the formatter is called to display the calculated statistics. The method cleanup

deletes all dynamically created objects, so that next input file can also be processed.

At this point, it is worth mentioning, that all of these objects (selectedAlgorithm,

transitionSystem and formatter) are dynamically initiated, where the object

transitionSystem is declared in the class control as follows (List.5.2):

#ifndef CONTROL_HH

#define CONTROL_HH

.

.

.

class Control

{

.

.

.

};

extern TransitionSys* transitionSystem;

#endif // ! CONTROL_HH

Listing 5.2 TransitionSys Dynamic Object extern Declaration.

The object is declared as an extern pointer object, as its actual initialization takes place in

the parser (Chapter 5.2), during the parsing process. This is mainly because we need to

pass a reference to this object into the selectedAlgorithm constructor (List.5.3), before the

object is even initialized, which usually leads to a core dump.

As we can see, the passed TransitionSys object, is a pointer to a pointer. More details in

that regard are provided in chapters 5.3 and 5.4.

39

#ifndef Algorithm_HH

#define Algorithm_HH

.

.

.

class Algorithm

{

.

public:

 Algorithm(std::string name = "", TransitionSys** transitionSystem = nullptr);

.

.

};

#endif // ! Algorithm_HH

Listing 5.3 Constructor of Class Algorithm.

5.2 Reading and Parsing Input

As demonstrated in the previous section, the method run of the class Control calls the class

member driver, an object of the class Driver, for each input file, passing a single file as

parameter into the member function parse. At this point the driver object takes over, and

starts parsing the text.

The class Driver has one significant method, namely parse (List.5.4)

int Driver::parse (const std::string &f)

{

 file = f;

 scan_begin ();

 yy::Parser* parser = new yy::Parser(*this);

 parser->set_debug_level (trace_parsing);

 int res = parser->parse ();

 scan_end ();

 delete parser;

 return res;

}

Listing 5.4 Method parse of Class Driver.

40

The method takes a constant reference to the file (the file’s name) that should be parsed. It

utilizes the methods scan_begin and scan_end declared in the scanner (Flex) to start and

stop the tokenizing. It also initializes the parser object, which in turn takes a pointer to the

parsing context (the driver). The parser starts with the call of the method parse, which does

the actual parsing. When the parsing is done, the driver ends the scanning and deletes the

parser object, returning to the caller in the class Control.

As for the parser and scanner (Bison and Flex), we will not go into full detail on

how they work. For the structure, compiling and classes generated by Bison and Flex please

refer to Chapter 6.1. We will however examine the configuration files of the parser and

scanner, since we have to define them according to our needs. List.B.2 and List.B.3 in

Appendix B display the complete files.

The parser configuration file tells the parser which tokens it has to expect in which

grammar rules, in order to perform a successful parsing. It also tells it which other classes

it communicates with, such as Driver, TransitionSys, etc. (List.5.5)

%code

{

include "Driver.hh"

include "TransitionSys.hh"

include "SymbolTable.hh"

include "Program.hh"

Program* program;

TransitionSys* transitionSystem;

SymbolTable* symbolTable;

}

Listing 5.5 Code Section in the Parser Configuration File.

This code section also allows declaring objects of these classes, so that they can be used

in the rules section. An example showing how the pointer object transitionSystem is

initialized (List.5.6), shows how to use grammar rules.

41

declaration_list: "<" system_name proc_count {symbolTable = new

SymbolTable;}

 declarations ">"

 {

 program = new Program(symbolTable, $3);

 transitionSystem = new TransitionSys($2, $3, program);};

Listing 5.6 Initializing a Class Object in the Rules Section of the Parser Configuration.

Whenever a grammar rule is matched by the parser, or a part of it, we can apply grammar

rule actions, which are program code. In this case C++ code, since we integrated Bison in

a C++ application. The code above shows how two class objects are initialized, whereas

they also take parameters defined or initialized in other grammar rules, e.g., symbolTable.

The $ symbol refers to the single parts of a rule i.e. the first part on the left is $$, and the

other parts are numbered respectively, e.g., $1, $2 and so on. These symbols carry a pre-

defined semantic value, which gets transferred from the leaves of a metaphoric parsing

tree, all the way up, or down, to the roots. Thus we can access all the elements we need

from the text in the input files, and use it in our tool. These elements will be further

described, when we examine the classes Program and SymbolTable.

 The scanner configuration file is very similar to that of the parser. It tells the scanner

which lexical instances are expected in an input text (Fig.A.2 Appendix A), and how to

handle them (List.5.7). For each matched lexical unit, the scanner creates a suitable token

and sends it to the parser.

// Rules

{blank}+ loc.step ();

[\n]+ loc.lines (yyleng); loc.step ();

"-" return yy::Parser::make_MINUS(loc);

"+" return yy::Parser::make_PLUS(loc);

…

Listing 5.7 Token Rules Section in the Scanner Configuration.

The token rules, as in the parser configuration, also allow rule actions, which in turn are

pre-defined Flex functions or value return statements going to the parser. The scanner also

42

forward declares the methods scan_begin and scan_end, which, as discussed, belong to the

driver to access a file and start scanning it, and at the end close it.

This sums up the first parsing pass using the parser and the scanner. If the input file

is lexically or syntactically incorrect, the parser and the scanner return a message referring

to the error. Otherwise, we move on to the second pass of the parsing done by the class

Program, as demonstrated in the sequence diagram below (Fig.5.3)

Figure 5.3 Second Parsing Pass

43

Even though the class Program (Fig.5.4) is only a secondary class compared to

TransitionSys, it plays a big role in completing the parsing of the input file, so that we can

generate a transition system.

Each program class object, corresponds to one input file. The method add is called by the

parser as a grammar rule action whenever a grammar rule is matched, whose parts make

up a program statement (a string representation of the statement and a type). These

statements are then stored in a vector of maps. The indexes of the vector correspond to the

program processes, and the map keys correspond to the program counter values of a

process. The differentiation between process blocks is done by the parser, based on the

grammar rules. The suitable action when parsing a new process block is to call the method

nextProcessBlock, which triggers incrementing the number of process found, and thus the

number of maps stored in the vector.

Figure 5.4 Class Program

44

Internally, the class uses its private methods to complete the parsing. The method

createStmt (List.5.8) is called by add using the same parameters, calling the constructor of

the class Statement to create a statement object. It also assigns reference labels to statement,

whose types are conditional, loop or returns of those, so that it can calculate the branching

addresses in further steps.

Statement Program::createStmt(std::string stmt, Type type)

{

 int pc = programCounters[currentProcess];

 int lbl = 0;

 Statement statement(pc, pc+1, pc+1, stmt, type);

 if(ENDIF == type || ENDWHILE == type || ELSE == type)

 {

 lbl = giveLabel();

 statement.setLabeled(lbl);

 }

 if(IF == type || ELSE == type || WHILE == type)

 {

 lbl = requestLabel();

 statement.setLabel(lbl);

 }

 return statement;

}

Listing 5.8 Method createStmt of Class Program.

After the whole input file is parsed, the function parse called by the class Control returns

to the function run (List.5.1), which triggers generating a transition system. The method

setUpSys calls the method sortStatements, which performs a series of private function calls,

in order to set the correct branching addresses, remove redundant statements that were

added to assist the labeling, set the correct program counters for the statements, and finally

set the correct variable addresses in the symbol table.

Three other classes that we have not examined yet, are Statement (Fig.5.5),

SymbolTable and Variable (Fig.5.6). Due to the complexity of the program statements, it

was necessary to encapsulate the knowledge regarding the attributes a statement can carry.

45

The most important attributes in the class Statement that are not necessarily self-

explanatory, are postCondition1, postCondition2, target and targets. postCondition1 holds

the value of the program counter of the directly following statement. postCondition2 is

only relevant to statements of special type (conditionals and loops), where it holds the value

of the corresponding branch address; in most cases when the boolean condition is not met.

target is the address of the variable on the left side of a statement (if the statement is an

assignment), and targets is a vector with the respective addresses of the right side variables.

Figure 5.5 Class Statement

46

 The class SymbolTable has the job of, managing and storing objects from the class

Variable and offering methods to access them and their attributes. The most important of

which being, initialValue, length (for arrays), and address (their address in the memory of

the tool).

5.3 Building Transition Systems

After all the parsing passes are complete, i.e., after the method sortStatements of the class

Program has returned (Chapter 5.2), the class TransitionSys (Fig.4.3) continues building

the transition system of the parsed input file (example program) in its method setUpSys. At

this point, we have to take a step back in the order of function calls in that method, as the

method creates the initial memory and the initial state using the private methods

createMemory (List.5.9) and createInitialState.

 The initial state is simply created by calling the constructor of the class State, into

which we pass the initial memory object as a function parameter. The initial memory is

built using the variables stored in the symbol table, utilizing their attributes (address,

length, etc.), in order to create the memory array (Chapter 3.5).

Figure 5.6 Classes SymbolTable and Variable

47

void TransitionSys::createMemory()

{

 SymbolTable* table = program->getSymTable();

 int num = numberOfProcesses;

 int size = table->getSize() + num;

 int value = 0;

 int index = 0;

 for(int i = 0; i < num; ++i)

 {

 initialMemory.add(0);

 }

 while(num < size)

 {

 value = table->getValueByIndex(index);

 table->setAddressByIndex(index, num);

 for(int i = 0; i < table->getLengthByIndex(index); ++i)

 {

 initialMemory.add(value);

 num++;

 }

 index++;

 }

}

Listing 5.9 Method createMemory of Class TransitionSys.

The last step in building a transition system is adding the program statements by calling

the method addTransitions (List.5.10), whereas they are now referred to as transitions.

As demonstrated, the method calls the constructor of the class Transition in each iteration

going over the map of statements, creating a corresponding transition object with the

needed parameters, which are the attributes of a transition object (Fig.4.3). In the end, all

program statements are stored as transition objects in the class TransitionSys, in a vector

of maps (Chapter 4.2). Finally, the program object is deleted, as it is no longer needed for

48

the following steps; thus we have a complete transition system object, containing all the

needed information for applying an algorithm.

void TransitionSys::addTransitions()

{

 for(int proc = 0; proc < numberOfProcesses; proc++)

 {

 std::map<int, Statement> stmtMap = program->getProcMap(proc);

 std::map<int, Transition> tranMap;

 int pc = 0;

 int addr = 0;

 for(auto a : stmtMap)

 {

 addr = a.second.getTarget();

 std::vector<int> targets = a.second.getTargets();

 std::string exp = a.second.getStatement();

 if("" != exp)

 {

 Transition t(proc, a.second.getPC(), addr, exp, targets,

a.second.getPostCond1(), a.second.getPostCond2());

 tranMap[pc] = t;

 pc++;

 }

 }

 transitions.push_back(tranMap);

 }

}

Listing 5.10 Method addTransitions of Class TransitionSys.

5.4 Applying Algorithms

Now that the transition system is set up, we can apply the algorithm chosen at the program

start; in this case the algorithm FullSearch (List 5.18), which implements the interface

49

Algorithm (Fig.4.4), and whose functionality will be demonstrated, as all other potential

algorithms have to implement the same methods.

 We left off at the return call of the method setUpSys in the method run (List.5.1) of

the class Control (Fig.5.1). Now we will examine the implementation behind the function

call: selectedAlgorithm->runAlgorithm(transitionSystem->getInitState());

But first, we will take a look at the constructor (List.5.11) of the interface class Algorithm.

Algorithm::Algorithm(std::string n, TransitionSys** t):

 name(n),

.

.

.

Listing 5.11 Constructor of Class Algorithm

As we notice in the head, the constructor takes two arguments, the name of the transition

system, and a pointer object to a pointer to the transition system object. In Chapter 5.2

(List.5.4), we have examined how a transition system pointer object is declared for the

first time, and then initialized in the grammar rule actions. However, it is also declared

using the extern directive in the class Control (List.5.2). An algorithm on the other hand,

expects a pointer to a transition system object, which in our case, is already a pointer to

an object that cannot be directly dereferenced; therefore, the class member

transitionSystem has to be defined as a pointer to a pointer.

The method runAlgorithm (List.5.12) takes the initial state of a transition system

as an argument, in order to start the execution. The method, as already mentioned in

Chapter 4.3, is a pure virtual method that must be implemented by any sub-class

inheriting from Algorithm. The following sequence diagram (Fig.5.7) demonstrates the

implementation of the algorithm.

50

Figure 5.7 Algorithm Implementation

51

void FullSearch::runAlgorithm(State oldState)

{

 std::vector<Transition> enabledTransitions = (*Algorithm::transitionSystem)-

>getEnabledTransitions(&oldState);

 if(enabledTransitions.empty())

 {

 Algorithm::numberOfDeadlocks++;

 addUniqueDeadlock(oldState);

 }

 for(auto transition : enabledTransitions)

 {

 State newState;

 if(transition.apply(oldState, newState))

 {

 addUniqueState(newState);

 newState.setPrevious(Algorithm::numberOfStates);

 Algorithm::numberOfStates++;

 Algorithm::numberOfAppliedTransitions++;

 newState.setNumber(Algorithm::numberOfStates);

 runAlgorithm(newState);

 }

 }

}

Listing 5.12 Method runAlgorithm as Implemented in FullSearch.

This method contains all the logic required for the algorithm to run its course. First, it

calls the method getEnabledTransitions (List.5.13) passing the initial state as parameter,

in order to obtain the transitions that can be applied (executed) at the current state, which

is the initial state at the start of the algorithm. These transitions are temporarily stored in

the vector enabledTransitions. If there are not any enabled transitions, the method detects

a deadlock, the state of which is automatically added to the set of all deadlocks; otherwise

the algorithm iterates through all enabled transitions, respectively applying (List.5.16)

them onto the current state (oldState), and creating a new resulting state (newState). The

52

algorithm contributes to the information required for the statistics by also adding the new

dynamically calculated states to the set of all states.

The key feature in this algorithm is the recursive call of the method runAlgorithm

demonstrated in this line:

runAlgorithm(newState);

For each new calculated state, the algorithm starts from the top, repeating all the steps in

order to complete a Full Depth Search, which is a specific characteristic of the full search

algorithm.

Determining, whether a transition is enabled or not at a certain state, is done partly

in the method getEnabledTransitions.

const std::vector<Transition> TransitionSys::getEnabledTransitions(State *state)

const

{

 std::vector<Transition> enabledTransitions;

 for(auto a : transitions)

 {

 for(auto b : a)

 {

 if(b.second.isEnabled(state))

 {

 enabledTransitions.push_back(b.second);

 }

 }

 }

 return enabledTransitions;

}

Listing 5.13 Method getEnabledTransitions of Class TransitionSys.

The method’s task is to go through all transitions existing in the transition system, where

it calls the method isEnabled (List.5.14), respectively pushing the enabled transitions into

the vector enabledTransitions, which in turn is the return value of the function.

bool Transition::isEnabled(State *state)

{

53

 bool enabled = false;

 if(programCounter == state->getPC(processNumber))

 {

 enabled = true;

 }

 return enabled;

}

Listing 5.14 Method isEnabled if Class Transition.

The criterion that determines, whether a transition is enabled or not, is the program counter

value of the transition at hand. This value is compared to the value in the memory snapshot

at the state passed into the method (Chapter 4.2). If both values are equal to each other, the

transition is enabled (executable) at this state, otherwise it is not. If no transitions are

enabled at a certain state, the algorithm has either reached a deadlock, or a final state, which

is also considered a deadlock in regards to the statistics.

The class Algorithm has two class members dedicated for keeping track of the

unique states and unique deadlocks (List.5.15). Their utility methods, try to add each

calculated state, depending on its type (state or deadlock), to the corresponding data

container (C++ set). A C++ set does not allow inserting duplicates i.e. objects that are

identical according to pre-defined criteria. It utilizes the default less operator to determine

which object goes before the other, and thus deciding if two objects are the same22. To

achieve this, we overloaded the less operator in the class State (List.B.4), and the equal to

operator in class Memory (List.B.5), since states differ only in the content of the memory

(Chapter 4.2).

 std::set<State> uniqueStates;

 std::set<State> uniqueDeadlocks;

Listing 5.15 Private Data Containers for States and Deadlocks in Class Algorithm.

 As for the core of the whole process, the method apply offered by the class

Transition performs a series of function calls as follows:

22 http://www.cplusplus.com/reference/set/set/set/ [Accessed: 11.03.2016]

http://www.cplusplus.com/reference/set/set/set/

54

bool Transition::apply(State oldState, State &newState)

{

 currentState = oldState.cloneState();

 if(isEnabled(¤tState))

 {

 int result = evaluateExp();

 executeTransition(result);

 newState = currentState.cloneState();

 return true;

 }

 else

 {

 return false;

 }

}

Listing 5.16 Method apply of Class Transition.

The method takes two arguments, a copy of the current state, and a reference to the new

state, which isn’t initialized yet. It checks again, if the transition is enabled at the given

state, and evaluates the expression (program statement) by calling the private method

evaluateExp, which dynamically builds an abstract syntax tree for the expression, as

expressions are stored as their string representation.

The tree is then evaluated using an abstract syntax tree evaluator (Fig.5.8), which returns

an integer value of the evaluated expression. Afterwards, this value is used to apply the

transition to the state by calling the private method executeTransition, which

differentiates between two types of statements, assignments and conditionals (intExp and

BooleanExp). The later causing changes only to the program counter values in the state

memory, whereas the former actually changes the values of the variables in the state

memory.

55

Figure 5.8 Abstract Syntax Subtree

56

After a transition is successfully applied, the function call returns with the now

initialized object newState using the method cloneState, which is further used in the

implementation of the algorithm, as demonstrated in the previous sections (List.5.12).

The algorithm increments the number of acquired states, the number of transitions, and

starts over from the top by recursively calling itself again. A unique state is also

identified using the data container in the class Algorithm.

5.5 Formatting Output

The last order of business after the completion of the algorithm execution, is to display the

statistics on the screen. The class Formatter (List.5.17) manages collecting the statistics

from the class Algorithm, and constructs a formatted string representation that can be used

as output in the console, which we will examine further in the evaluation chapter.

class Formatter

{

public:

 Formatter(Algorithm *selectedAlgorithm);

 virtual ~Formatter();

 const std::string showStatistics();

 void formatStatistics();

private:

 Algorithm* selectedAlgorithm;

 std::string statistics;

};

Listing 5.17 Class Formatter

This class is declared as friend in the algorithm interface (List.5.18), so that it can access

the protected class members of Algorithm, without having to define utility functions for

that purpose.

57

class Algorithm

{

 friend class Formatter;

.

.

.

};

Listing 5.18 friend Class Declaration of Formatter in Algorithm

58

Chapter 6

Evaluation

This chapter demonstrates the settings and conditions required, in order to run the tool. It

also shows how to start the tool with the program arguments on the target system, in

addition to the final output displayed in the console. Finally, this chapter examines the

achieved result, showing how the accomplished work meets the development requests.

6.1 Setup

As stated earlier in Chapter 3.5, the source code of the tool was set to be written in C++11,

and compiled using GNU GCC. However, two components in the tool, namely the parser

and the scanner, are external tools (Chapter 5.2 Bison and Flex), which are integrated

within our tool to assist reading and parsing the input. These tools are managed by the

developer only through their configuration files, Parser.yy and Scanner.ll (List.B.2 and

List.B.3 Appendix B). Nevertheless, the two configuration files are mainly used to generate

the parser and scanner C++ header and implementation files, which is done by the Flex and

Bison compilers. To insure a standardized way of compiling the source code, and linking

the object files, we decided to use a Makefile. All the compilation options regarding the

GCC, Flex and Bison compilers are in that Makefile.

On a different note, we also provided a README file where we describe the system

requirements, and how to compile and run the tool properly, with the desired input files

and the desired algorithm.

Naturally, the Bison and Flex compilers can be run separately, and their generated

files can be linked to our code by including the needed files of those in the class Driver.

59

The classes generated are: location.hh, Parser.cc, Parser.hh, position.hh, Scanner.cc and

stack.hh.

6.2 Experiments

The first example program used in the first experiment is rather compact, containing only

two process blocks with one program statement each (List.6.1), performing a simple

assignment to a variable and an array variable.

<readers_writers 2, x 1 1, l 2 2>

[

 x := 42

]

[

 l[1] := 42

]

Listing 6.1 Example Input File with two Process Blocks

The first line in the example program is the declaration block, which contains the name of

the example program, the number of process blocks, and the initialization of the variables

used; where the variables are declared with their respective lengths and values. The square

brackets indicate the start and end of a process block and enclose its statements.

To run the tool with this example file as input, and the algorithm FullSearch, we type the

following command in the console:

./FastPrototyper –f readers_writers

In this case, the input file is located in the same directory as the tool executable

FastPrototyper. Afterwards, the tool starts the execution and the output is displayed in the

console (List.6.2).

60

Execution of Full Search on:

The Transition System: readers_writers - Number of Processes:

2

Process: 0

Program Counter: 0 - Expression: x:=42

Type: Assignment

Process: 1

Program Counter: 0 - Expression: l[1]:=42

Type: Assignment

The Memory:

Index: 0 => Value: 0 - Index: 1 => Value: 0 - Index: 2 =>

Value: 1 - Index: 3 => Value: 2 - Index: 4 => Value: 2 -

Number of visited states w/out the initial state: 4

Number of Unique states: 3

Number of applied transitions: 4

Number of deadlocks: 2

Number of unique deadlocks: 1

Listing 6.2 Tool Output for Example Program

The output of the tool includes the conditions, under which the tool was run. It also shows

the process blocks found in the input file, to insure the correctness of the generated

transition system. A simple overview of the values stored in the tool memory is included

as well. Lastly, the statistics regarding the execution are displayed.

 Since the example program is relatively simple, we can verify the quality of the

execution of the algorithm manually, as shown in the state graph (Fig.6.1). We will call the

transitions corresponding to the program statements t1.1 and t2.1. The black filled states

are accept (final) states.

61

As demonstrated, the statistics calculated by the tool are correct. The number of

dynamically calculated states, same as the number of applied transitions, is four; there exist

two deadlocks, of which only one is unique, since s2 = s4, and therefore three unique states,

namely s1, s2 and s3.

However, we can also formally verify the correctness of the statistics by using this

mathematical formula: Number of States = i*t+1 where i is the number of interleavings

(paths leading to an accept state) and t is the number of transitions in one interleaving. The

formula calculates the number of all visited states (not only unique states) plus the initial

state.

To calculate the number of interleavings we use this formula:

Number of Interleavings = (pt)! / (𝑡!)𝑝, where p is the number of process blocks and t is

the number of transitions in each process block, which must be the same in each process

block to apply this formula.

This means:

Number of Interleavings i = (2*1)! / (1!)2 = 2 / 1 = 2

Number of States Including the Initial State = 2*2+1 = 5

t1.1

S0 S1 S2

S3 S4

t2.1

t2.1
t1.1

Figure 6.1 State Graph of Example Program

62

The second example program has three process blocks with different numbers of

program statements (List.6.3). The first and third processes have one program statement

each, whereas the second has two.

< readers_writers 3, x 1 2, y 1 2>

[

 x := 1

]

[

 y := 5

 x := 4

]

[

 y := 6

]

Listing 6.3 Example Input File with three Process Blocks

The tool execution is done the same way as in the first experiment. The generated output

(List.6.4) shows the information regarding the example program and the calculated

statistics.

In this case, it is not possible to verify the correctness of the number of visited states, as

the process blocks have different number of program statements. However, we can verify

the number of interleavings corresponding to the number of all deadlocks in the state graph

using the formula:

Number of Interleavings = (∑ 𝑡𝑖𝑝
𝑖=1)! / ∏ (𝑡𝑖!)𝑝

𝑖=1 , where p is the number of all process

blocks, and each process i has ti transitions.

63

Execution of Full Search on:

The Transition System: readers_writers - Number of

Processes: 3

Process: 0

Program Counter: 0 - Expression: x:=1

Type: Assignment

Process: 1

Program Counter: 0 - Expression: y:=5

Type: Assignment

Program Counter: 1 - Expression: x:=4

Type: Assignment

Process: 2

Program Counter: 0 - Expression: y:=6

Type: Assignment

The Memory:

Index: 0 => Value: 0 - Index: 1 => Value: 0 - Index: 2 =>

Value: 0 - Index: 3 => Value: 2 - Index: 4 => Value: 2 -

Index: 5 => Value: 2 -

Number of visited states w/out the initial state: 34

Number of Unique states: 24

Number of applied transitions: 34

Number of deadlocks: 12

Number of unique deadlocks: 5

Listing 6.4 Tool Output for Example Program

Applying the values at hand we calculate:

Number of Interleavings i = (∑ 𝑡𝑖3
𝑖=1)! / ∏ (𝑡𝑖!)3

𝑖=1 = (1+2+1)! / (1!*2!*1!) = 4! / 2

 = 24 / 2 = 12.

Our last example program (List.A.4 Appendix A) is relatively more complex than

the first and second examples, containing several conditional statements and a loop. The

calculated statistics (List.6.5) upon the execution of the tool display the degree of

64

complexity that can be realized by the tool. Unfortunately, it is not possible to verify the

correctness of the statistics within this thesis, as the resulting state graph cannot to be drawn

manually within human capabilities. The mathematical formulas introduced earlier also

fail to provide sufficient proof, as they are not suitable for working with conditional

statements, as they require that all transitions are enabled, which depends on the values in

the Boolean expressions.

Number of visited states w/out the initial state: 1133

Number of Unique states: 542

Number of applied transitions: 1133

Number of deadlocks: 157

Number of unique deadlocks: 5

Listing 6.5 Tool Output for Example Program (Incomplete)

6.3 Extending and Maintaining The Tool

One of the most important aspects regarding the tool, is its ability for extension and

maintenance, so that it can be used by developers and scholars in further research. Mainly

to allow implementing more elaborate POR-Algorithms, and to apply them on more

complex example programs; as well as adjusting and extending the grammar of the input.

 The grammar definition at hand (List.A.1 Appendix A), in its abstract form, can be

extended according to the features demanded by developers. The following example

demonstrates, how additional syntactic and semantic rules can be added to the grammar

definition, and how the responsible tool components can be extended in regards to the new

added features.

65

Considering the following section of the grammar:

statement: atomic_statement

 {program->add($1, ATOMIC);}

 | conditional

 {program->add("endif", ENDIF);}

 | loop

 {program->add("endwhile", ENDWHILE);};

The grammar rule defines three types of statements; loops, conditionals and atomic

statements, whereas atomic statements are assignmens.

We can extend the types of accepted statements, adding a switch/case statement, defined

as follows:

statement: atomic_statement

 {program->add($1, ATOMIC);}

 | conditional

 {program->add("endif", ENDIF);}

 | loop

 {program->add("endwhile", ENDWHILE);}

 | switch

 {program->add(“endswitch”, ENDSWITCH);};

Of course, we have to further define the switch non-terminal symbol. For example, the new

switch statement accepts integer expressions:

switch: “switch” int_expr

 {program->add(“switch” + $2, SWITCH);}

 “{“ case_block

 default_case “}”

 {};

The case block must also be defined. We will restrict the case code to atomic statements

for simplicity reasons, however allowing more than one case, and not allowing a missing

default case:

66

case_block: case case_block {}

 | case {};

case: “case” int_exp “:” {program->add($2, CASE)}

atomic_statement { program->add($4, ATOMIC);}

“break” { program->add(“endcase”, BREAK);};

default_case: atomic_statement { program->add($1, ATOMIC);}

“break” { program->add(“endcase”, BREAK);};

The scanner also needs to be informed about the new tokens:

// Rules

{blank}+ loc.step ();

[\n]+ loc.lines (yyleng); loc.step ();

"if" return yy::Parser::make_IF(loc);

.

.

.

 “switch” return yy::Parser::make_SWITCH(loc);

“case” return yy::Parser::make_CASE(loc);

“break” return yy::Parser::make_BREAK(loc);

The responsible class (Program) uses the same method add without having to change its

prototype. However, we have to define the new statement types (SWITH, CASE and

BREAK), which is done in the class Statement:

enum Type { ATOMIC = 0, IF, THEN, ELSE, ENDIF, WHILE, ENDWHILE,

SWITCH, ENDSWITCH, CASE, ENDCASE = 10 };

67

And in the method createStatement of class Program:

Statement Program::createStmt(std::string stmt, Type type)

{

 int pc = programCounters[currentProcess];

 int lbl = 0;

 Statement statement(pc, pc+1, pc+1, stmt, type);

 if(ENDIF == type || ENDWHILE == type || ELSE == type || ENDSWITCH

== type || ENDCASE == type)

 {

 lbl = giveLabel();

 statement.setLabeled(lbl);

 }

 if(IF == type || ELSE == type || WHILE == type || SWITCH == type || CASE

== type)

 {

 lbl = requestLabel();

 statement.setLabel(lbl);

 }

 return statement;

}

Any other aspects in the grammar can be similarly changed, added or extended, offering

developers the freedom to adjust the grammar of the input language to suit their needs.

 The second key aspect in regards to maintenance, is the algorithm interface, which

offers a standardized skeleton for implementing state exploration algorithms, including

ones based on partial order reduction.

A developer only needs to create a new class that implements (inherits from) the interface

Algorithm in order to apply their algorithms onto transition systems. For example, if we

want to implement the algorithm Dynamic Partial Order Reduction, as introduced by

68

Flanagan and Godefroid23, we create a class e.g. DPOR and have it inherit from Algorithm

as follows:

#ifndef DPOR_HH

#define DPOR _HH

#include "Algorithm.hh"

class DPOR: public Algorithm

{

public:

 DPOR (std::string name = "", TransitionSys** transitionSystem = nullptr);

 ~ DPOR ();

 void runAlgorithm(State state);

private:

 void addUniqueState(State state);

 void addUniqueDeadlock(State state);

};

#endif // ! DPOR _HH

The implementation logic of the algorithm is encapsulated in the implementation file

DPOR.cc. More precisely, the logic is implemented solely inside the method runAlgorithm.

Thus, we don’t need to worry about connecting our new algorithms to the entire system,

since the methods addUniqueState and addUniqueDeadlocks are implemented in the class

Algorithm.

23 https://users.soe.ucsc.edu/~cormac/papers/popl05.pdf [Accessed: 03.03.2016]

https://users.soe.ucsc.edu/~cormac/papers/popl05.pdf

69

Chapter 7

Conclusion

This chapter provides a brief summary of the topics and ideas discussed in the thesis, as

well as the most important findings. Moreover, it offers some final thoughts and

perspectives with regard to the achieved work at hand.

7.1 Summary

Throughout this thesis, we examined the theoretical aspects of model checking and model

checking exploration algorithms based on partial order reduction in the field of distributed

systems. We also demonstrated, the important role of transition systems in representing

state space graphs of distributed systems, scaling it down to simulating the unpredictability

of system behavior in multi-threaded environments; emphasizing on the gravity of the state

space explosion problem, and the appliance of the above mentioned theory as means for

alleviating this problem.

 Furthermore, we presented an adequate, yet simple solution for aiding scholars and

developers in their research for constructing the most fitting and appropriate POR-

algorithms, in addition to quickly implementing and applying those, onto transition

systems that meet the requirements and wishes of developers.

 The exhibited process of analyzing, designing and implementing the tool, shows a

systematic approach to putting the theoretical knowledge into practice, connecting the

abstract theory of computer science with pragmatic exercise of the concepts of modern and

agile software engineering and object oriented programming; however, maintaining a sense

of control over the software using fairly acceptable procedural techniques.

70

 The result of this work is thus, a moderately complex tool that can be utilized in

developing and inspecting POR-algorithms, which also possesses a sufficient degree of

capability for maintenance and extension.

7.2 Perspective

As proven by the performed experiments, the tool is capable of reading and parsing simple

example programs, as well as more elaborate ones. It can transform these programs into

transition systems that perfectly correspond to the introduced formal theory without

dismissing any practical details. Moreover, the tool complies with the presented requests

and prerequisites in regards to both of the functional and non-functional aspects, as it

clearly delivers reliable statistics in respect to applying algorithms as means for exploring

transition systems, while preserving the ability to be extended and adapted to suit more

intricate demands.

 In addition to the accomplished work, the tool has the potential for further

implementation and upgrade. It can be extended into a test suite, or test framework, that

checks and compares several algorithms, when applied onto the same system, so that it can

produce detailed statistics regarding the quality and efficiency of POR-algorithms.

Moreover, the tool can be provided with a graphical user interface (GUI) that allows

developers to manage the available algorithms and example programs. The visualization

can also be applied to the generated transition systems to represent them using state graphs,

and to visualize the execution of algorithms and allow step-by-step inspection (debugger

view) e.g. marking visited states with different colors, highlighting enabled transitions etc.

71

Finally, as any other proposed work, this thesis is also subject to praise and critique.

The suggested solution to the observed problem may carry some limitation in respect to

the complexity of the systems it simulates in its current state. On the other hand, it surely

offers a great value of contribution in this field of study; and provides a foundation, to

which many useful ideas can be added.

72

Bibliography

[AW04] Attyia, Hagit; Welch, Jennifer: Distributed Computing : Fundamentals,

Simulations, and Advanced Topics.volume 19. John Wiley & Sons, s.l.,

2004.

[BK08] Baier, Christel; Katoen, Joost-Pieter: Principles of Model Checking :

Representation and Mind Series. The MIT Press, s.l., 2008, pp.1-16.

[Boe89] Boehm, Barry: Software Risk Management. IEEE Press Piscataway, NJ,

USA, 1989.

[Cla08] Clarke, Edmund M, Jr.: The Birth of Model Checking. In: 25 Years of

Model Checking, Springer Science & Business Media, 2008, pp.1-26.

[CGP99] Clarke, Edmund M, Jr.; Grumberg, Orna; Peled, Doron A: Model

Checking. MIT Press Cambridge, MA, USA, 1999.

[CE81] Clarke, Edmund M.; Emerson, E. Allen: Design and Synthesis of

Synchronization Skeletons Using Branching-Time Temporal Logic. In:

Proceeding Logic of Programs, Springer Lecture Notes in Computer

Science, 131, 1981, pp.52-71.

[FG05] Flanagan, Cormac; Godefroid, Patrice: Dynamic partial-order reduction

for model checking software. ACM New York, NY, USA, 2005.

[EP02] Eisner, Cindy,; Peled, Doron: Comparing Symbolic and Explicit Model

Checking of a Software System. In: Proceedings of the 9th International

SPIN Workshop on Model Checking of Software. Springer-Verlag

London, UK, 2002, pp.230-239.

[Eme08] Emerson, E.Allen: The Beginning of Model Checking: A Personal

Perspective. In: 25 Years of Model Checking, Springer Science &

Business Media, 2008, pp.27-45.

[EP08] Erk, Katrin; Preise, Lutz: Theoretische Informatik: Eine umfassende

Einführung, 3. Springer Berlin Heidelberg, 2008．

[Ern04] Ernst, Erik: Separation of Concerns. Dept. of Computer Science,

University of Aarhus, Denmark, 2004.

[FF+10] Frappier, Marc; Fraikin, Benoît et al.: Comparison of Model Checking

Tools for Information Systems.

http://www.dmi.usherb.ca/~frappier/Papers/TR-GRIL-1006-29.pdf, 2010.

[Cited: 29.02.2016.].

73

[God94] Godefroid, Patrice: Partial-Order Methods for the Verification of

Concurrent Systems : An Approach to the State-Explosion Problem.

University of Liege, Computer Science Department, 1994.

[GV08] Grunberg, Orna; Veith, Helmut: 25 Years of Model Checking : History,

Achievements, Perspectives. Springer-Verlag Berlin Heidelberg, 2008.

[Met14] Metzler, Patrick: Lazy POR for the Verification of Distributed Programs.

Technical University of Darmstadt, 2014.

[Pel93] Peled, Doron: All from one, one for all : On model checking using

representatives. In: Computer Aided Verification. Springer Berlin

Heidelberg, 1993, pp.409-423.

[SBM+13] Saissi, Habib et al.: Efficient Verification of Distributed Protocols Using

Stateful Model Checking. In: SRDS, IEEE, 2013, pp.133-142.

[SA06] Strunk, Elisabeth A.; Aiello, M. Anthony: A Survey of Tools for Model

Checking and Model-Based Development.

http://www.cs.virginia.edu/~eas9d/papers/CS-TR-2006-17.pdf, 2006,

[Cited: 29.02.2016.].

[MIT16] The MIT Press: Model Checking | The MIT Press.

https://mitpress.mit.edu/books/model-checking, 2016, [Cited:

29.02.2016.].

74

Appendix A

Input Language

This chapter provides details of the input language, including the grammar definition, the

tokenizer (Flex) and the parser (Bison), as well as an example of an input file.

A.1 The Grammar

Legend:

Italic = Non-terminal.

“Plain” = Terminal.

Non-terminal : non-terminal « terminal »… = Rule.

Program = Start symbol.

program: declaration_list process_blocks

declaration_list: "<" system_name proc_count declarations ">"

system_name: "identifier" | %empty

proc_count: "number"

declarations: declarations declaration | %empty

declaration: "," "local" "identifier" length init_values

| "," "const" "identifier" length init_values

| "," "identifier" length init_values

| "," "identifier" init_values

length: "number"

75

init_values: "number"

process_blocks: process_blocks "[" block "]" | %empty

block: statement block | statement

statement: atomic_statement | conditional | loop

atomic_statement: assignment

assignment: asgn_target ":=" int_expr

conditional: "if" bool_expr then_block else_block

then_block: "then" "{" block "}" | %empty

else_block: "else" "{" block "}" | %empty

loop: "while" bool_expr "{" block "}"

bool_expr: int_expr "==" int_expr

| int_expr "<" int_expr

| int_expr ">" int_expr

int_expr: int_expr "+" int_expr

| int_expr "-" int_expr

| int_expr "*" int_expr

| int_expr "/" int_expr

| int_expr "%" int_expr

| "(" int_expr ")"

| var

| array

| "number"

asgn_target: var | array

var: "identifier"

array: var "[" int_expr "]"

Figure A.1 Grammar Description

76

A.2 The Tokens

"==" EQ

"<" LT

">" GT

"-" MINUS

"+" PLUS

"*" STAR

"/" SLASH

"%" MOD

"(" LPAREN

")" RPAREN

"[" LBRACKET

"]" RBRACKET

"{" LBRACE

"}" RBRACE

":=" ASSIGN

"," COMMA

"local" LOCAL

"const" CONST

"if" IF

"then" THEN

"else" ELSE

"while" WHILE

{int} NUMBER

{id} IDENTIFIER

<<EOF>> END

Figure A.2 The Tokens

77

A.3 Example Program

Please refer to the grammar definition (Fig.A.1) to understand the syntax of the example.

< Branching_Example 2, x 1 2, y 1 2>

[

 if x == 2 then {

 x := 1

 }

]

[

 x := 0

 y := 4

]

Lisiting A.3 Example Program Written in the Defined Input Language

78

A.4 Example Program

Please refer to the grammar definition (Fig.A.1) to understand the syntax of the example.

< Branching_Looping 2, local num 1 2, x 1 0, l 2 4, y 2 4>

[

 if l[0] == 4 then {

 l := 24

 if x == 0 then {

 num := l[1]

 if y[0] == 4 then {

 num := 81

 x := 45

 }

 }

 else {

 num := 6

 }

 x := 10

 }

 while x == 10{

 l := l+1

 x := l

 if x > 4 then {

 l := 45

 y[0] := 34

 if x > 4 then {

 y[1] := 1

 }

 else {

 y[1] := 4

 }

 }

 }

 num := x * l + (x + l)

]

[

 l := 45

 y[0] := 34

]

Listing A.4 Example Program Written in the Defined Input Language

79

Appendix B

Code Segments

This chapter provides code segments from the source code of the tool that are however

too large or unsuitable for placing in the text.

B.1 FastPrototyper.cc

#include "Control.hh"

int main (int argc, char *argv[])

{

 Control *control = new Control(argc, argv);

 control->run();

 return 0;

}

Listing B.1 FastPrototper.cc with the Program’s Main Function

B.2 The Parser Configuration File

// Use c++ with version 3.0.2 of Bison

%skeleton "lalr1.cc" /* -*- C++ -*- */

%require "3.0.2"

// Define the name of the Parser class to be generated

%defines

%define parser_class_name {Parser}

80

// Tell Bison how to handle tokens i.e. generate them using a constructor

%define api.token.constructor

%define api.value.type variant

%define parse.assert

// Tell Bison what to use.

%code requires

{

include <string>

class Driver;

}

// The parsing context.

%param { Driver& driver }

%locations

%initial-action

{

 // Initialize the initial location.

 @$.begin.filename = @$.end.filename = &driver.file;

};

%define parse.trace

%define parse.error verbose

// Include the Driver and other classes needed while parsing

// Declare pointer objects to use while parsing. Initialization takes place during the

parsing to avoid segmentation faults.

81

%code

{

include "Driver.hh"

include "TransitionSys.hh"

include "SymbolTable.hh"

include "Program.hh"

Program* program;

TransitionSys* transitionSystem;

SymbolTable* symbolTable;

}

// Error Handling

void yy::Parser::error (const location_type& l, const std::string& m)

{

 driver.error (l, m);

}

Listing B.2 Parser Configuration

In the code segment above, three sections are left out, due to their extreme length. These

sections are the token section, token types and grammar rules, which are already

mentioned in Appendix A (Fig.A.1 and Fig.A.2).

B.3 The Scanner Configuration File

%{ /* -*- C++ -*- */

include <cerrno>

include <climits>

include <cstdlib>

include <string>

include "Driver.hh"

include "Parser.hh"

82

// Work around an incompatibility in flex

undef yywrap

define yywrap() 1

// The location of the current token.

static yy::location loc;

%}

 // options

%option noyywrap nounput batch debug noinput

 // Definitions

id [a-zA-Z][a-zA-Z_0-9]*

int [0-9]+

blank [\t\r]

%{

 // Code run each time a pattern is matched.

 # define YY_USER_ACTION loc.columns (yyleng);

%}

%%

%{

 // Code run each time yylex is called.

 loc.step ();

%}

 // Rules

{blank}+ loc.step ();

[\n]+ loc.lines (yyleng); loc.step ();

"==" return yy::Parser::make_EQ(loc);

"<" return yy::Parser::make_LT(loc);

">" return yy::Parser::make_GT(loc);

"-" return yy::Parser::make_MINUS(loc);

"+" return yy::Parser::make_PLUS(loc);

"*" return yy::Parser::make_STAR(loc);

"/" return yy::Parser::make_SLASH(loc);

"%" return yy::Parser::make_MOD(loc);

"(" return yy::Parser::make_LPAREN(loc);

")" return yy::Parser::make_RPAREN(loc);

"[" return yy::Parser::make_LBRACKET(loc);

"]" return yy::Parser::make_RBRACKET(loc);

"{" return yy::Parser::make_LBRACE(loc);

83

"}" return yy::Parser::make_RBRACE(loc);

":=" return yy::Parser::make_ASSIGN(loc);

"," return yy::Parser::make_COMMA(loc);

"local" return yy::Parser::make_LOCAL(loc);

"const" return yy::Parser::make_CONST(loc);

"if" return yy::Parser::make_IF(loc);

"then" return yy::Parser::make_THEN(loc);

"else" return yy::Parser::make_ELSE(loc);

"while" return yy::Parser::make_WHILE(loc);

{int} {

 errno = 0;

 long n = strtol (yytext, NULL, 10);

 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))

 driver.error (loc, "integer is out of range");

 return yy::Parser::make_NUMBER(n, loc);

}

{id} return yy::Parser::make_IDENTIFIER(yytext, loc);

. driver.error (loc, "invalid character");

<<EOF>> return yy::Parser::make_END(loc);

%%

Listing B.3 Scanner Configuration

B.4 Overloaded Less Operator

bool State::operator <(const State& state) const

{

 return !(memory == state.memory);

}

Listing B.4 Overloaded less Operator in Class State

84

B.5 Overloaded Equal To Operator

bool Memory::operator ==(const Memory& mem) const

{

 bool result = true;

 for(unsigned int index = 0; index < memory.size(); ++index)

 {

 if(get(index) != mem.get(index))

 {

 result = false;

 break;

 }

 }

 return result;

}

Listing B.5 Overloaded equal to Operator in Class Memory

85

Appendix C

Design Diagrams

C.1 Complete Class Diagram

C.1 Complete Class Diagram

86

C.1 Complete Sequence Diagram

C.2 Complete Sequence Diagram

	Introduction
	1.1. Background & Motivation
	1.2. Related Work
	1.3. Outline

	Preliminaries
	2.1 Software Verification
	2.2 Model Checking
	2.3 Transition Systems
	2.4 State Exploration and State Space Explosion
	2.5 Partial Order Reduction
	2.6 Fast Prototyping

	Requirements Analysis
	3.1 Fast Prototyping Tool
	3.2 Input
	3.3 Functionality
	3.4 Output
	3.5 Non-Functional Requirements

	Concept & Design
	4.1 Input Language
	4.2 Representation of Transition Systems
	4.3 Algorithm Interface

	Implementation
	5.1 Start-Up
	5.2 Reading and Parsing Input
	5.3 Building Transition Systems
	5.4 Applying Algorithms
	5.5 Formatting Output

	Evaluation
	6.1 Setup
	6.2 Experiments
	6.3 Extending and Maintaining The Tool

	Conclusion
	7.1 Summary
	7.2 Perspective

	Bibliography
	Appendix A
	Appendix B
	Appendix C

