
Hochschule Darmstadt
- Fachbereich Informatik -

A Clinical Decision Support System for
Personalised Medicine

Abschlussarbeit zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

vorgelegt von
Johannes Idelhauser (743870)

Referent: Prof. Dr. Bernhard Humm
Korreferent: Prof. Dr. Ronald Moore

Ausgabedatum: 11.04.2016
Abgabedatum: 11.10.2016

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffent-
lichten Quellen entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen
oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem
entsprechenden Quellennachweis versehen. Diese Arbeit ist in gleicher oder ähnlicher
Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Darmstadt, 11. Oktober 2016
Johannes Idelhauser

ii

Abstract

Mit der stetig steigenden Zahl an medizinischen Ressourcen und Publikationen
wächst die Herausforderung für Ärzte immer auf dem neusten Stand der Forschung
und der aktuell empfohlenen Behandlungsmethoden zu bleiben. Zusätzlich ist in
den letzten Jahren die Patientensicherheit ein stetig wachsendes Thema und einer
der Ziele von personalisierter Medizin. Um Ärzte und andere klinische Bedienstete
bei ihren Entscheidungen zu unterstützen, wird in dieser Thesis ein klinisches In-
formationssystem für personalisierte Medizin vorgestellt. Es versucht den Inform-
ationsbedarf von Ärzten durch die Integration und Aggregation von sekundären
medizinischen Quellen basierend auf einer elektronischen Patientenakte (EHR) zu
beantworten.

Das vorgestellte System besteht aus verschiedenen Services, die jeweils andere In-
formationsbedarfe abdecken. Einer dieser Services ist der Literatur-Service, der rel-
evante und nützliche medizinische Publikationen für einen spezifischen Patienten
findet. Andere Services sind unter anderem ein Medikationsinformations-Service,
ein Arzneimittelinteraktion-Service und eine automatische Suchmaschine für relev-
ant klinische Studien in der Nähe. Die Relevanz des vorgeschlagenen Systems wird
durch die Implementierung zweier Services in einer EHR-Applikation für die Be-
handlung von Hautkrebs verdeutlicht. Die beiden implementierten Services sind der
Literatur-Service und der Arzneimittelinteraktions-Service.

Besonderer Fokus wurde dabei auf die Usability des Informationssystems gelegt.
Ärzte und andere klinische Helfer sollen schnell und intuitiv alle relevanten Informa-
tionen mit minimaler Systeminteraktion finden. Eine erste Studie mit medizinischen
Anwendern deutet auf die Relevanz des Systems hin.

iii

Abstract

Given the rapidly growing number of medical publications and resources, physicians
face challenges in keeping up-to-date with current research and patient care best
practices. Additionally, the topic of patient safety has been growing more and more
important over the last years and is an important goal of personalised medicine.
To support physicians and other health personnel in making clinical decisions, this
thesis presents the concept and prototypical implementation of a Clinical Decision
Support System (CDSS) for personalised medicine. It satisfies information needs of
consultants at the point of care by integrating secondary medical resources based
on a concrete patient’s Electronic Health Record (EHR).

The proposed system consists of different services that satisfy different information
needs. One of them is a literature service that provides relevant and useful medical
papers that fit the patient at hand. Other services include but are not limited to a
drug information service, a drug interaction checker and a clinical trial service that
searches potentially beneficial trials in the country. The feasibility of the system
is demonstrated by two example services that have been implemented in an EHR
application for melanoma care. Those are an automatic medical literature search
service and a drug interaction checker.

Particular focus has been on the usability of the CDSS allowing physicians and other
health personnel to quickly and intuitively gather relevant information with min-
imal system interaction. An initial assessment of the CDSS by medical professionals
indicates its benefit.

iv

Parts of this thesis were published in the Proceedings of the 2016
European Collaborative Research Conference (CERC 2016):

Idelhauser, J., Beez, U., Humm, B. G., & Walsh, P. (2016). “A Clinical Decision
Support System for Personalized Medicine”. In: U. Bleimann, B. Humm, R. Loew, I.
Stengel, & P. Walsh (Eds.), Proceedings of the 2016 European Collaborative Research
Conference (CERC 2016) (pp. 132–145). Cork, Ireland.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project Surrounding . 2
1.3 Outline . 3

2 Requirements 4

3 Background 6
3.1 Personalised Medicine . 6
3.2 Electronic Health Records . 7
3.3 Clinical Decision Support Systems . 7
3.4 Machine Learning . 9

3.4.1 Supervised Classification . 9
3.4.2 Unsupervised Clustering . 10
3.4.3 Algorithms . 10
3.4.4 Performance Metrics . 12

3.5 Natural Language Processing . 13
3.6 Information Retrieval . 15

3.6.1 Retrieval Models . 15
3.6.2 Evaluation Metrics . 18

4 Information Architecture 21
4.1 Information Demand . 21
4.2 User Interaction Model . 23

4.2.1 Literature Service . 23
4.2.2 Evidence-Based Medical Recommendations 24
4.2.3 Drug Information Service . 25

vi

4.2.4 Clinical Trials Locator Service 27
4.2.5 Medical News Service . 27

4.3 Information Sources . 28
4.3.1 Literature Service Sources . 28
4.3.2 Evidence-based Medical Recommendations 28
4.3.3 Drug Information Sources . 29
4.3.4 Clinical Trials . 30
4.3.5 Medical News . 30

5 Software Architecture 32
5.1 System Overview . 32
5.2 Literature Service . 34

5.2.1 Overview . 34
5.2.2 Data Source Selection . 35
5.2.3 EHR Mapping . 37
5.2.4 Query Generation Engine . 38
5.2.5 Literature Retrieval . 41
5.2.6 Teaser Text Generation . 42
5.2.7 Clustering . 43
5.2.8 Result Ranking . 45
5.2.9 User Feedback . 48
5.2.10 User Interface . 49

5.3 Drug Interaction Service . 50
5.3.1 Data Source Selection . 51
5.3.2 Drug Interaction Search . 51
5.3.3 Drug Interaction Interface . 52

5.4 Decision Support Controller . 53
5.5 GUI Architecture . 53

6 Implementation 55
6.1 Literature Service . 55

6.1.1 Query Generation Using Rules 56
6.1.2 Predicting Search Terms Using Machine Learning 58
6.1.3 Literature Retrieval from PubMed 61
6.1.4 Teaser Text Generation Using Weka 63
6.1.5 Literature Clustering with Carrot2 68

6.1.6 Saving Feedback . 70
6.1.7 Literature Service View Component 71

6.2 Drug Interaction Service . 73
6.2.1 Drug Interaction Search . 74
6.2.2 Interaction Interface . 74

7 Evaluation 76
7.0.1 Usability Tests and Initial Survey 76
7.0.2 Response Time . 77
7.0.3 Extensibility and Maintainability 78
7.0.4 Literature Service Document Retrieval Evaluation 78

8 Related Work 80

9 Conclusion and Future Work 82
9.1 Conclusion . 82
9.2 Future Work . 83

9.2.1 Additional CDSS Services . 83
9.2.2 Standards and Service Architecture 84
9.2.3 Extending the Literature Service 84
9.2.4 Drug Interaction Data Source 86

Appendices 87

A Literature Service Data Sources 88

B EBM Recommendation Sources 90

C Drug Information Data Sources 92

D Temporary File Wrapper 95

E Evaluation Survey 97

List of Figures

3.1 Support Vector Machine . 11
3.2 Boolean set theory for the query Q = ta ∧ (¬tb ∨ tc) 16
3.3 Illustrated cosine similarity sim(d1, d2) = cosθ 18
3.4 Precision-recall curve at 11 standard recall levels 20

4.1 Literature service mockup . 24
4.2 EBM Recommendations Service . 25
4.3 Drug information service with different service panels 26
4.4 Searchable Adverse Effects Service . 26
4.5 Clinical trials locator (left) and medical news service (right) 27

5.1 Three-layer system architecture . 33
5.2 Literature service system architecture 34
5.3 SearchField class . 37
5.4 Sample query generation from an EHR using semantic rules 38
5.5 Training data creation from positive feedback 40
5.6 The literature class (UML) . 41
5.7 UML of the class Cluster . 45
5.8 Literature feedback class . 48
5.9 Literature service user interface . 49
5.10 Drug interaction architecture . 50
5.11 DrugInteraction class . 50
5.12 Drug interaction panel . 52
5.13 Client GUI architecture . 54

6.1 Query expression composite pattern 56
6.2 Sample conversion of feedback instances to an input vector 58
6.3 Algorithm illustration for identifying ontology terms 60

ix

7.1 Precision-recall curves for ranked retrieval in the literature service . . 79

List of Tables

3.1 Confusion matrix . 12

4.1 The six information needs identified according to Maggio et al. (2014) 22
4.2 Identified data sources for the clinical trial locator 31

5.1 Pros and cons of using a local search engine vs PubMed online API . 36
5.2 Characteristics of Lingo and STC clustering algorithms 44

6.1 Model performance to predict concluding sentences 67
6.2 Running Carrot2 as a server vs. running it in IKVM.NET 68

xi

Acronyms

ARFF Attribute-Relation File Format
BoW Bag of Words
CDSS Clinical Decision Support System
DCS Document Clustering Server
DLL Dynamic Link Library
EBM Evidence-based Medicine
EF6 Entity Framework 6
EHR Electronic Health Record
EMR Electronic Medical Record
IDF Inverse Document Frequency
IR Information Retrieval
JSON JavaScript Object Notation
JVM Java Virtual Machine
LOC Lines of Code
MCC Matthews Correlation Coefficient
MDT Multidisciplinary Team
MeSH Medical Subject Headings
ML Machine Learning
NB Naïve Bayes
NLM U.S. National Library of Medicine
NLP Natural Language Processing
ORM Object-relational Mapping
PMID PubMed ID
POS Part of Speech
REST Representational State Transfer
SVM Support Vector Machine

xii

Chapter 1

Introduction

The topic of patient safety and care quality has been growing more and more im-
portant over the last years. One example for this is the just recently introduced
German law that entitles patients with more than three prescribed drugs to have
a medication chart drafted for them (BMG, 2016). However, not only in Germany
the topic of patient safety is getting more important. Studies suggest that many
medical errors could be avoided with the correct use of information technology in
clinical settings (Lyman et al., 2010). This is mainly the introduction of Electronic
Health Records (EHR) to store patient-specific data and the use of Clinical Decision
Support Systems (CDSS) (Berner et al., 2007, p. 3) to support health personnel with
the right information at the right time.

1.1 Motivation

In addition to the growing importance of patient safety, physicians face challenges
in keeping up-to-date with current research and patient care best practices due to
the rapidly growing number of medical publications and resources. Especially in the
context of personalised medicine and cancer care, ongoing research leads to constant
new insights and new treatment options. To ensure good treatment outcomes and
prevent malpractice lawsuits (Marchant et al., 2013), physicians should therefore
keep current with ongoing developments.

1

The domain of personalised medicine aims at tailoring medical decisions, practices,
interventions or products to the individual patient based on their predicted response
or risk of disease with the goal of increasing patient health and safety (Academy of
Medical Science, 2015). While tailoring the treatment to individual patients is com-
mon practise in medicine, the term has been recently used for informatics approaches
in medicine that use large amounts of patient data, particularly genomics data, for
selecting appropriate therapies.

To support physicians and other health personnel in making clinical decisions, keep-
ing current with ongoing research and new personalised medicine approaches, this
thesis presents the concept and prototypical implementation of a CDSS for per-
sonalised medicine. It satisfies physicians’ information needs at the point of care
by aggregating and integrating primary (e.g. clinical trial results, original articles)
and secondary medical resources (e.g. systematic reviews, drug monographs) based
on a concrete patient’s EHR, thus paving the way for personalised medicine. The
proposed CDSS is integrated into an EHR application for melanoma skin cancer
treatment.

1.2 Project Surrounding

The thesis is part of the project SAGE-CARE (SemAntically integrating Genomics
with Electronic health records for Cancer CARE) which is funded by the European
Commission, Horizon 2020 Marie Skłodowska-Curie Research and Innovation Staff
Exchange, under grant no. 644186. As part of the project, an EHR application for
treating melanoma cancer patients is currently developed (Humm et al., 2015; Beez
et al., 2015).

In this context, previous work on providing medical publications for an EHR has
been done in a master’s thesis (Beez, 2015). That thesis discussed, amongst others,
the architecture and implementation of a literature service in a commercial EHR
application. Its author proposed a combined rule-based and machine learning ap-
proach for generating queries against the medical search engine PubMed. This thesis
uses the already existing application code as a basis and integrates, modifies and
extends the functionality into the EHR application for melanoma cancer treatment
currently developed in the project. As a result, some basic ideas like the combin-

2

ation of a rule-based with a machine learning approach for query generation must
therefore be attributed to the author of the preceding work. However, extensive
modifications were made and new developments were added as part of this thesis.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 specifies the prob-
lem statement in terms of the requirements by describing functional as well as non-
functional requirements. Chapter 3 outlines relevant background information and
theoretical foundations. Physician’s information demands and ways to satisfy them
are analysed in Chapter 4. Subsequently, the proposed CDSS’s architecture is out-
lined in Chapter 5 and finally implemented in Chapter 6. Chapter 7 evaluates the
proposes CDSS and its implemented services by comparing it against the require-
ments using feedback from medical experts while Chapter 8 compares the thesis’
approach with related work. Finally, Chapter 9 concludes the thesis and indicates
future work.

3

Chapter 2

Requirements

As described in Chapter 1, the goal of this thesis is to provide a CDSS for support-
ing physicians and other health personnel during patient encounters. In discussions
with clinicians involved in the treatment of melanoma as well as medical students,
the following requirements for a CDSS integrated into an EHR application were
identified:

1. Functional Requirements

1.1. Relevant: The CDSS shall satisfy the consultants’ information demand
with relevant, helpful and latest medical information.

1.2. Personalised: The information provided shall be tailored to the medical
condition of a particular patient.

1.3. Pro-active: The CDSS shall offer information pro-actively without addi-
tional data entry by the user.

1.4. Easily comprehensible: shall provide a quick overview of all information
available as well as the possibility to easily acquire more detailed inform-
ation where needed.

1.5. Workflow: The CDSS shall not interfere with the consultant’s EHR work-
flow.

2. Non-Functional Requirements

2.1. Usable: The CDSS shall be intuitive to use and self-explanatory.

4

2.2. Low response time: The response time for all interactions with the CDSS
shall be less than 1s.

2.3. Extensible: The ongoing extension of the CDSS with new information
sources shall be facilitated with moderate implementation effort.

5

Chapter 3

Background

This chapter introduces important definitions and background concepts of this thesis.
First, the terms Personalised Medicine (Section 3.1), Electronic Health Records (Sec-
tion 3.2) and Clinical Decision Support System (Section 3.3) are explained and
discussed. Then, the foundations of relevant machine learning techniques are invest-
igated (Section 3.4). As this thesis also processes natural language text, Section 3.5
introduces useful Natural Language Processing (NLP) techniques. Finally, Section
3.6 describes relevant concepts of Information Retrieval.

3.1 Personalised Medicine

The term personalised medicine is often used but defined in many different ways.
Many definitions associate the term with genetics and gene sequencing to predict
a patient’s response to a drug or therapy. Especially developments in the field of
genetics lead to significant drops in gene sequencing costs. This allows the develop-
ment of tailored treatments and drugs to target special gene mutations like BRAF
or ALK and significantly improves drug response and survival rates (PMC, 2014).

Other definitions view the term personalised medicine as something that always ex-
isted because medicine has always seen the individual patient in its centre. Redekop
et al. (2013) developed a more general definition and define personalised medicine
as “the use of combined knowledge (genetic or otherwise) about a person to predict
disease susceptibility, disease prognosis, or treatment response and thereby improve

6

that person’s health.” (Redekop et al., 2013). It is therefore not solely genetic inform-
ation that is used to predict the response in personalised medicine, but also other
factors like the patient’s proteins, environment or other indicators not yet known.
Following their logic, truly personalised medicine is the ultimate goal and ideal form
of medicine that can only be achieved with further advances in science.

3.2 Electronic Health Records

As this thesis implements and integrates a CDSS into an existing EHR application,
the term ERM should first be properly defined. The ISO (International Organization
for Standardization) defines an EHR as a “repository of information regarding the
health status of a subject of care, in computer processable form, stored and transmit-
ted securely and accessible by multiple authorized users” (ISO, 2005). It continues to
mention the use of a standardised EHR-independent information model to support
health care integration efforts.

However, others see the EHR more as a tool spanning multiple independent organisa-
tions that holds all long-term records of a patient with the aim to facility care across
institutions (Rishel et al., 2005). Literature suggests there is a difference between
an electronic health record and an electronic medical record (EMR). An EHR is
considered as focusing on the overall health of the patient and provide a broader
view on the patient’s care by sharing information across organisations. EMRs on the
other hand are more focused on treatment in practice. They are basically electronic
versions of the paper charts in clinician’s offices but usually do not leave the clinic
in electronic form (Garret et al., 2011).

In the context of this thesis the ISO definition is considered appropriate. This work
will refer to an EHR application to describe the whole software storing data for
several patients and mention an EHR when the actual patient’s data is meant.

3.3 Clinical Decision Support Systems

A CDSS provides “clinicians, staff, patients, and other individuals with knowledge
and person-specific information, intelligently filtered and presented at appropriate

7

times, to enhance health and health care” (Berner, 2009). An important aspect of
the CDSS definition is the fact that a CDSS does not aim at replacing professional
advice but rather seeks to support health personnel in making decision and therefore
helps reduce medical error (Karthigeyan et al., 2014). The target group of a CDSS
are not only physician’s but also other health personnel, e.g. nurses. In fact, it was
found that in some cases the use of a CDSS was more effective if it also provided
nurses with information (Berner, 2009, p. 6).

Considering classical decision support systems, several different types can be iden-
tified based on the underlying data source (Power, 2008; Sanchez, 2014):

• Model-driven systems: They utilise mathematical, probabilistic or machine
learning models that abstract a problem and allow the user to manipulate
model parameters in order to see the outcome and make decision.

• Data-driven systems: Using huge amounts of data and data mining or busi-
ness intelligence techniques to provide the management with insight into their
organisation.

• Communications-driven systems: Their focus is on collaboration, commu-
nication and social interaction to reach a decision. This is also important for
clinical decision support systems as physicians tend to have confidence in the
knowledge of trusted colleagues.

• Document-driven systems: Those systems leverage document retrieval and
analysis techniques to navigate over document databases like research papers,
standards, guidelines, etc.

• Knowledge-based systems: Leverage a formalised knowledge base in a spe-
cial representation, these systems usually use ontologies to infer and and reason
over.

This classification can also be applied to clinical decision support systems although
the distinction made most often is between knowledge-based and non-knowledge-
based systems (Berner, 2009, p. 5).

On top of that, a variety of systems and modules can be regarded as clinical decision
support. Current implementations include drug monographs, drug dosage calcula-
tion based on the patient’s age and weight or alerts and reminders systems with

8

manually added rules. CDSS development and architecture in recent years tended
to shift from stand-alone solutions to ones integrated in clinical systems that leverage
standards in order to reuse existing CDSS modules. The most recent development
shows efforts to build CDSS systems in a service-based architecture (Wright et al.,
2008).

3.4 Machine Learning

The task of Machine Learning (ML) is a branch of Artificial Intelligence and finds
patterns or makes predictions for the future from data. This section gives a short
introduction to the domain of ML. From several main ML areas, two are relevant in
the context of this thesis: supervised and unsupervised learning. Of those, supervised
classification (Section 3.4.1) and unsupervised clustering (Section 3.4.2) are used in
this work.

3.4.1 Supervised Classification

In supervised learning the task is to learn a function that can assigns outputs (also
called labels) to given inputs (also called feature vectors) using training data that has
both input and output variables. The learned function can later be used to assign
labels to unseen data. Typical examples of supervised learning are classification
and regression tasks where the output variables are either labels (classification) or
continuous valued numbers (regression) (Sammut et al., 2011, p. 941). The following
section describes the case of classification.

Training a Classifier

Usually, training a classifier utilises pre-labeled data which is split into a training
and a test data set. As the name suggests, the first is used to train the ML model
while the test data set is used to evaluate the quality of the generated model on
unseen data. If enough labeled data is available, this separating is done by splitting
the data set at a certain percentage into training and test data. However, if there
is not enough labeled data, the process of cross-validation can be chosen. Cross-
validation separates the whole labeled data set into n partitions, called the folds.

9

Then the classifier is trained and evaluated n times by always taking n − 1 folds
as training an the remaining fold as test data. The classifier is then evaluated by
combining all n results.

Multi-Class and Multi-Label Classification

Many classification tasks are binary and only assign one from two possible labels
to each unlabelled input instance. Examples for that are spam or fraud detection
classifiers. However, there are also many real world problems that are not binary
classification problems. The number of possible labels is usually greater than two.
If from the many labels only one is assigned to each instance, the task is generally
referred to as multi-class classification. Whereas if more labels are assigned to an
instance, the task is usually a multi-label classification.

3.4.2 Unsupervised Clustering

Unsupervised learning describes the more explorative approach of finding patterns
in unseen data without having outputs like labels in supervised learning. Common
tasks of unsupervised learning include clustering and dimensionality reduction (Sam-
mut et al., 2011, p. 1009). Clustering is often used for knowledge discovery in data
exploration. It tries to partition an unseen dataset into groups of similar instances,
called clusters. Large data sets like for example social networks are often clustered
to identify communities of people (Mohri et al., 2012, p. 2). Similarity between in-
stances is typically calculated by applying distance measures like the Euclidean or
Manhattan distance (Sammut et al., 2011, p. 180).

3.4.3 Algorithms

There are many different ML algorithms for different ML tasks and each of them
has its own strengths and weaknesses. In the context of this thesis, two algorithms
are used that are explained further in this section.

10

Naïve Bayes

Naïve Bayes (NB) is a simple classification algorithm that is based on the Bayes the-
orem and assumes a strong independence among features, given a class. Although
this independence is often not present in real world data sets, it often delivers com-
petitive results and is widely used in practice. Computational efficiency and the
robustness in the face of noisy and missing data help to make it more attractive in
practice (Webb, 2010, p. 713).

Support Vector Machines

Support Vector Machines (SVM) are typically linear algorithms that are used for
classification and regression tasks. In the simplest classification task with only two
classes, SVMs try to find a hyperplane with the biggest margin that separates the two
classes. As seen in Figure 3.1, both hyperplanes H1 and H2 correctly separate the
two classes. However, H2 has a wider margin than H1 and will probably generalise
better on unseen data (Zhang, 2010, pp. 941)

Figure 3.1: Support Vector Machine (Zhang, 2010, p. 943)

Especially in text categorisation SVMs prove their superiority and often “deliver
state-of-the-art performance in accuracy, flexibility, robustness, and efficiency” (Zhang,
2010, p. 942). As real world problems are often not linearly separable, SVMs can
be extended by using appropriate kernel functions. Additionally, SVMs have been
extended to cope with multi-class and multi-label classification problems.

11

3.4.4 Performance Metrics

Supervised learning methods are usually evaluated by calculating different measures
based on the confusion matrix (Table 3.1). A confusion matrix has a size of n × n
where n is the number of classes. Its rows represent the actual class labels of each
instance whereas the columns show the predicted classes. The content of a confu-
sion matrix consist of TP (true positive), the number of correctly identified positive
instances and TN (true negative), the number of correctly labeled negatives. Simil-
arly, FN (false negative) and FP (false positive) describe falsely identified instances
(Rechenthin, 2014, p. 58).

Predicted classes
Yes No

Actual classes
Yes TP FN
No FP TN

Table 3.1: Confusion matrix

Popular measures for determining the quality of a classifier are precision and recall.
They are not only used in ML, but also in the domain of IR. Precision describes
the percentage of instances that are correctly classified as positives while recall
describes the percentage of correctly classified positives out of all positives. High
recall typically occurs with low precision and high precision with low recall. To
accommodate this, the F-Measure builds the harmonic mean of the two. A value of
1 indicates a classifier having perfect scores for both precision and recall (Rechenthin,
2014, pp. 60):

Precision = TP

TP + FP

Recall = TP

TP + FN

F -Measure = 2× precision× recall
precision+ recall

(3.1)

The last measure, Matthews Correlation Coefficient (MCC) was introduced by Mat-
thews (1975) to measure the quality of a binary classification, especially in cases
where the classes are of hugely differing sizes. It shows the correlation coefficient
between predicted and actual binary classes and returns values between -1 and +1.

12

+1 relates to perfect agreement between the variables, -1 to total disagreement. It
returns 0 for completely random predictions (Baldi et al., 2000, p. 415).

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.2)

3.5 Natural Language Processing

Parts of this thesis, like text classification, document clustering and IR, use or men-
tion tools and techniques stemming from NLP. This section introduces those used
in this work. It is worth noting, that most of the presented techniques are depend-
ent on the text’s language and have to be considered differently for each individual
language.

Tokenisation

Tokenisation splits a text into individual pieces, called tokens. In many languages,
including English, using the space character is a good approximation to split the
text. However, there are special cases as for example in the sentence “Hello, this is
a test.”. Simply splitting at the spaces results in two tokens including some punctu-
ation: “Hello,” and “test.”. Another example that tokenisation is not a trivial task is
splitting “aren’t” into tokens. The possibilities include “aren’t”, “arent”, “are n’t”
and “aren t”. The question is which would be best to represent the original text and
needs special consideration, for example when building a search engine (Manning
et al., 2008, pp. 22).

Sentence Segmentation

Sometimes a text has to be separated into individual sentences. This is usually
referred to as sentence segmentation or sentence splitting. Although in languages
like English full stops and other punctuation characters like “?”, “:” or “!” can be
used, the task is not trivial. For example, simply splitting “Mr. & Mrs. Smith like
to go to the cinema.” at the period character will result in a wrong segmentation.

13

Therefore, a ML model is often trained that can be used to predict if a specific sign
indicates the end of a sentence or not.

Stemming and Lemmatisation

Usually, natural language text consists of words in different grammatical versions,
e.g. organise, organises or organising. Similarly, different words might hold a similar
meaning as for example democratic, democracy and democratisation. In some situ-
ations it might be useful to not store each variant of those word but rather only one
word representing all of the different versions. This would lead to a dimensionality
reduction of a document’s BoW representation. For this, stemming and lemmat-
isation are used to transform different related forms of a word into a common base
form. Where stemming does this by simple pruning of the words, lemmatisation uses
dictionaries and morphological analysis of words (Manning et al., 2008, p. 32).

POS Tagging

A Part-of-speech (POS) tagger assigns the part of speech to a word in a text. As
POS labels depend on the word’s definition but also its context in the sentence,
a POS tagger usually utilises a trained model to assign the most likely POS tag
(Charniak, 1997). POS tags are usually short symbols like “VB” for a verb in the
base form or “NNS” for a plural noun1. POS tagging is the basis for more advanced
natural language processing like syntactical sentence parsing. This is however not
relevant in this context.

Bag Of Word Models

Documents or text can be represented in a BoW model when only the occurrence
of terms but not their position in the text is important. As a result, the sentence
“Mary is quicker than John” results in the same BoW model as “John is quicker
than Mary”. This is acceptable as documents with a similar BoW model tend to
be similar in content (Manning et al., 2008, p. 117). As an example of how a BoW

1A detailed list of POS tags often used can be found under https://www.ling.upenn.edu/

courses/Fall_2003/ling001/penn_treebank_pos.html

14

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

model works, the sentence “Mary likes to be quicker than John” is added to the
sentence collection and the following list of words is created from them:

1 ["Mary", "is", " quicker ", "than", "John", "likes", "to",
↪→ "be"]

Using the list above, the following lists can be created for each sentence:

1 // Mary is quicker than John
2 [1, 1, 1, 1, 1, 0, 0, 0]
3 // John is quicker than Mary
4 [1, 1, 1, 1, 1, 0, 0, 0]
5 // Mary likes to be quicker than John
6 [1, 0, 1, 1, 1, 1, 1, 1]

3.6 Information Retrieval

Some aspects of this thesis are located in the domain of information retrieval (IR).
The goal of IR is usually to find information (usually in the form of documents)
in a unstructured form (usually natural language text) from a large collection or
database. The retrieved resources should hereby help the user answer his or her
information need and considered relevant if they do (Manning et al., 2008, p. 1).

This section describes the parts of IR relevant for this thesis. First, information
retrieval models by which IR systems can be categorised are illustrated in Section
3.6.1. Section 3.6.2 presents evaluation metrics that can be used to measure the
performance of IR system.

3.6.1 Retrieval Models

Three main retrieval models can be identified in IR. The Boolean model, the vector
space model and the probabilistic model. The first two models are relevant for this
thesis and therefore described in more detail.

15

Boolean Model

The Boolean retrieval model is based on set theory and Boolean algebra used in
the past for many early retrieval systems. The idea behind the Boolean retrieval
model is to view a document as a set of index terms that are either present or
absent. The index term weights are therefore all binary. Queries are basically Boolean
expressions consisting of index terms combined with the connectors AND, OR and
NOT. Evaluating these expressions results in a binary decision where each document
is either relevant or non-relevant to a query without any partial matches. Staying in
the domain of Boolean algebra, a query Q can be expressed as a Boolean expression
in disjunctive normal form. The query Q = ta∧(¬tb∨tc) could therefore be expressed
as (1, 0, 0) ∨ (1, 0, 1) ∨ (1, 1, 1), with each term being a binary vector of the form
(ta, tb, tc). This can be seen in Figure 3.2 (Sugiyama, 2004).

Figure 3.2: Boolean set theory for the query Q = ta ∧ (¬tb ∨ tc) (Sugiyama, 2004)

Drawbacks of the Boolean model include the binary decision model where docu-
ments are considered either relevant or non-relevant to a query without the notion
of ranking. This hinders good retrieval performance as in IR there is often not this
clear distinction. For example, documents might not be found if they do not contain
an index term specified in the query. The document could nevertheless be important
as it can contain a synonym of the query term while also presenting all other query
terms. This exact matching and subset creation might lead to too many or too few
documents being returned. Additionally, users often consider it difficult to formulate
their information need in a Boolean query. As a result, the generated user queries
are usually rather simple. Advantages of the model include a clean formalism and

16

comparably simple implementation (Sugiyama, 2004, p. 12). Current IR systems
know of the drawback of the Boolean retrieval model and try to find different ways
of index term weighting.

Vector Space Model

In contrast to the Boolean retrieval model, the vector space model recognises the
limitations of binary term weighting and assigns non-binary weights to the index
terms. The assigned term weights are used to calculate the similarity between the
query and the documents in a retrieval system. This similarity measure is used to
rank the returned documents and therefore account for documents only partially
matching the query. It is also a good way of providing order to a large retrieved
collection by showing the documents more similar to the query first.

Term Frequency The simplest approach to assign weights to index terms is to
count the number of occurrences of a term t in a document d. This is called the term
frequency TFt,d. Counting the number of term occurrences without any preservation
of the order they are in, is usually called creating a bag of words model (BoW).
However, not all terms in a document are equally important in determining the
relevance of it. One example are stop words that are excluded from indexing as they
are too common words and carry little meaning for indexing a document. Exemplary
stop words are prepositions like “of”, “a”, “on”, . . . (Manning et al., 2008, p. 117).

Inverse Document Frequency Simply considering the mentioned term frequen-
cies to asses the relevancy on a query has one drawback as all terms are considered
equally important. This is in fact not the case as for example the term “auto” occurs
in almost all documents of a document collection about the automotive industry. To
accommodate this, the inverse document frequency (IDF) value idft of a term t is
calculated over the whole document set by looking at the number of all documents
N and the number of documents containing the term dft:

idft = log
N

dft

TF-IDF Weighting Using the two previously mentioned measures tf and idf , a
combined weight for each term in each document is calculated by

17

tf -idf
t,d

= tft,d × idft

Applying tf -idf t,d to a term t in a document d results in the following values:

• highest value, if the term occurs many times in a small set of documents

• lower value if the term occurs a few times in many documents

• lowest value if the term occurs in practically all documents

The documents as well as the query can from now on be seen as vectors of tf -idf
values. This representation is considered to be the vector space model and is the basis
for other IR tasks like scoring, document classification and document clustering.
Considering ~v(d) as the vector generated from document d, the documents and
the query can be displayed in a vector space with one dimension per term (Figure
3.3). To calculate the similarity between vectors and account for different document
lengths, the standard way is to use the cosine similarity of two vectors (Manning
et al., 2008, pp. 119).

Figure 3.3: Illustrated cosine similarity sim(d1, d2) = cosθ (Manning et al., 2008, p.
121)

3.6.2 Evaluation Metrics

Although in IR the user query is usually rather vague and the returned documents
are not exact answers to a specific question, the retrieval system has to be evaluated

18

by looking at the relevance of the retrieved documents regarding the query. The
most popular measures in accessing the quality of a IR system are precision, recall
as well as the harmonic mean of the two. Measuring is usually done by defining a test
collection and test queries an letting experts decide what documents are relevant for
the test queries.

Precision

The precision is the fraction of retrieved documents that are relevant, answering the
question of how many of the retrieved documents are relevant:

Precision = #(relevant items retrieved)
#(retrieved items)

Recall

The recall measure resembles the fraction of relevant documents that are retrieved,
effectively stating how many relevant items were selected.

Recall = #(relevant items retrieved)
#(relevant items)

Harmonic Mean (F-Measure)

As focussing on any of the previously mentioned evaluation metrics might be too
focused, the F-measure calculates the harmonic mean between the two:

F = 2× precision× recall
precision+ recall

The three measures only consider unranked retrieval where the whole unordered set
is used to calculate the measures. However, in a more realistic IR system the user
is typically only interested in the the top k returned documents, hence the ranking
plays an important role in assessing the quality of the system. As a user usually
proceeds from the top to the bottom of the retrieved ranked document list, the
precision and recall will vary depending on the current position and the number

19

of relevant or non-relevant documents so far seen. To evaluate ranked systems, the
precision and recall values are gathered for different evaluation steps, usually based
on the 11 standard recall levels 0%, 10%, 20%, . . . , 100% and plotted to form a
precision-recall curve (Figure 3.4)(Sugiyama, 2004, pp. 23).

Figure 3.4: Precision-recall curve at 11 standard recall levels (Sugiyama, 2004, p.
25)

20

Chapter 4

Information Architecture

This chapter describing the information architecture first investigates common clin-
ical information needs and physician’s questions at the point of care (Section 4.1).
Section 4.2 then presents an interaction concept that tries to satisfy these found
information demands at the point of care. Potential available information sources
are identified and mapped on the information demands in Section 4.3.

4.1 Information Demand

A central question when building a CDSS is which information medical professionals
might need at the point of care. Several studies try to answer that question in order
to improve medical education. Clarke et al. (2013) found that most physicians’ and
nurses’ information demands could be related to the domains of diagnosis, medic-
ation and therapy. Similarly, Ebell et al. (2011) reported that “[t]he most common
question types were ’How should I treat finding/condition y given situation z?’, ’Is
drug x indicated in situation y or for condition y?’, and ’What is the cause of symp-
tom x?’ ” (Ebell et al., 2011). Information sources should therefore “provide relevant,
valid material that can be accessed quickly and with minimal effort” (Smith, 1996).

Maggio et al. (2014) interviewed 21 physicians from the US and the Netherlands and
identified six information needs at the point of care (Table 4.1). Their secondary
objective was to determine which kind of data source is rather used to satisfy these
information needs. They focus on PubMed as the source for primary literature and

21

UpToDate as the source for evidence-based summaries. It is notable that both data
sources seem to have a right to exist and are used frequently to answer different
kinds of questions. The authors also mentioned that often those resources were not
checked during patient encounters due to time constraints, but were rather consulted
after work.

Reason Definition

1. Refreshing To update or aid in the recall of one’s own known knowledge
2. Confirming To check one’s own knowledge for self-satisfaction or in preparation to speak,

take action, advise patients, etc. To confirm another individual’s or re-
source’s knowledge/coverage of a topic

3. Logistics To answer practical questions to facilitate action
4. Teaching To teach trainees through a variety of methods, including lecturing, role

modelling, etc
5. Idea generating To generate ideas for treatment, diagnosis or an overall sense of what is hap-

pening with a patient
6. Personal learning To foster one’s own learning or satisfy curiosity

Table 4.1: The six information needs identified according to Maggio et al. (2014)

Another study focused on drug information needs at the point-of-care in Sweden
(Rahmner et al., 2012). Identified as important were automatically generated alerts
for severe drug interactions or adverse effects. The alerts should be linked to the
EHR as physicians would otherwise not take the time to check for interactions.
Also, the severity of the interaction would be an important factor when displaying
alerts as too many non-relevant alerts would lead to an alert fatigue. As a result,
physicians might ignore even severe interactions. Another aspect they noted was the
question of how the drug will affect the patient. Hereby, physicians wished to see
information about the reversibility of severe adverse effects. To detect if a patient’s
symptom is drug related or not, the possibility to search a patient’s drug lists for
adverse effects matching the symptom was proposed (Rahmner et al., 2012).

Concerning drug safety, physicians wished data on allergy or hypersensitivity. This
was actually perceived as most important as the system should actively stop pre-
scription when such a case would occur. In order for that to work, data on the
patient’s allergies would have to be stored in the EHR and filled when an allergy
is identified. Drug dosing is especially difficult in children and elderly patients as
there is a narrow drug range and limited research in that area. Physicians’ wished
a system to link between weight and drug dose to calculate the dosing and create

22

automatic alerts. Other functionalities included drug images to provide patients with
information on how good a pill can be swallowed and if it could be split (Rahmner
et al., 2012). Asked for ways to improve existing EHRs, participants of the study
suggested “links and/or sheets to scientific articles and news about certain drugs”
(Rahmner et al., 2012, p. 122).

Due to the rapid progress and development of new drugs and therapies in cancer
treatment, patients and physicians are encouraged to participate in clinical trials
(National Cancer Institute, 2016). Although this is not a specifically mentioned
information need, it makes sense to include a service that searches relevant clinical
trials for the patient based on its EHR.

4.2 User Interaction Model

To satisfy the previously identified information needs, physicians tend to access
primary literature in the form of abstracts and full-text as well as secondary lit-
erature in the form of summaries and reviews (Maggio et al., 2013). In order to
provide an intuitive way for physicians and other health personnel to access this in-
formation, the proposed CDSS leverages several information services that each try
to satisfy different information needs. Those information services are organised in
panels that the users can customise and fit to their needs by deciding which service
panels should be displayed and which should be hidden. Additionally the order and
size of the panels can be adapted to the user’s individual needs while the resulting
layout is persisted over different sessions for the individual user.

4.2.1 Literature Service

One of the main services in the CDSS is the literature service to find and display
relevant primary medical literature that is related to the patient at hand (Fig. 4.1).
The literature service displays automatically generated filters to quickly navigate the
found literature. The filters are displayed on the left whereas the medical literature
is shown on the right. For each medical publication its title, journal and publication
date is displayed. In the context of evidence-based medicine (EBM), publications
with a high degree of evidence are to be preferred in patient care (Hung et al.,

23

2015). As such, publications that are reviews or clinical trials are shown with a
marker indicating their publication type. This also aligns with a study from 2013
that logged and analysed data queries in a hospital and found that “[a]lmost a third
of the articles [...] accessed were reviews.” (Maggio et al., 2013).

Figure 4.1: Literature service mockup

For quick orientation and relevance assessment, terms that appear in the patient’s
EHR are highlighted in the literature service. To help the relevance assessment pro-
cess, a teaser text is displayed when hovering the eye icon after each publication
title. In order to give the users a way to give feedback on the relevance of a publica-
tion and improve the literature search, icons with a thumbs-up and a thumbs-down
are provided.

4.2.2 Evidence-Based Medical Recommendations

Evidence-based medicine describes the assessment and use of the best available
research for decision making in patient treatment and diagnosis. This is done by
focusing on well-designed, conducted research with a strong level of evidence like
systematic reviews or randomised controlled trials (Hung et al., 2015). There a clin-
ical decision support systems that specialise on providing evidence-based treatment
guidelines and summaries written by medical experts that reflect the current state of
research. Obst et al. (2013) assessed the use of such a service named UpToDate.com
and suggested that physicians often have little time and that navigating the ser-
vice could sometimes be time consuming. They also noted that the summaries were
sometimes written confusingly and that it took too long to quickly grasp the desired
information.

24

Figure 4.2: EBM Recommendations Service

The EBM recommendation service (Fig. 4.2) therefore queries different secondary
information sources for patient-related evidence-based summaries and reviews and
extracts the most important sections that describe the patient’s issue. If the users
wish to see the extracted sections in context, they can follow the links and visit the
original text.

4.2.3 Drug Information Service

Other important information in patient care is information on drugs and their inter-
actions “at the point of drug prescribing” (Rahmner et al., 2012). Therefore, the drug
information service provides information normally available in package inserts and
secondary decision support services in a more accessible and structured way (Fig.
4.3, left). The provided information includes dosage data for different age groups and
pre-filled calculators to compute the correct dosage based on the age and weight of
the patient. Other information consists of warnings, adverse effects, pregnancy, phar-
macology, administration guidelines, material for patient education and pill images
and prices. Selecting a drug for displaying can be done in an autosuggest-supported
field that ranks already prescribed medication higher, but allows also searching for
medication not yet prescribed.

As physicians indicated they wanted to see automatically generated alerts for severe
drug interactions and adverse effects (Rahmner et al., 2012), an alert is displayed

25

Figure 4.3: Drug information service with different service panels

prominently (Fig. 4.3, top). For more information on how to manage the interaction
or alternative drugs, an appropriate link is provided. Non-severe drug interactions
as well as drug-food interactions are displayed in an own panel where the users have
the possibility to check interaction with other, not yet prescribed drugs (Fig. 4.3,
right).

To “make drug information more searchable” (Rahmner et al., 2012) and for example
allow checking if a patient’s symptom could be drug related, an adverse effects panel
is introduced (Fig. 4.4). It automatically identifies drug-related comorbidities that
are registered in the EHR but also allows searching for symptoms not yet recorded.
An option to read more provides information on how to manage this effect, when it
will occur or how long it will last.

Figure 4.4: Searchable Adverse Effects Service

26

4.2.4 Clinical Trials Locator Service

Especially in cancer care the participation in clinical trials is an option for patients
of all clinical stages as new findings lead to the development of many new drugs
(National Cancer Institute, 2016). A clinical trials service is therefore introduced
that searches for nearby clinical trials fitting the patient (Fig. 4.5, left).

Figure 4.5: Clinical trials locator (left) and medical news service (right)

Found clinical trials are displayed by their title as well as the location and distance to
the user’s current location. Similar to previously mentioned services, terms appearing
in the EHR are marked to allow quick visual navigation. Also, the status and the
date the trial was added to the clinical trial register might be important to know
information. By clicking on the title of a clinical trial the user can open the original
entry to further assess its relevance.

4.2.5 Medical News Service

Finally, a news service provides recent news on treatments, drugs, legislative inform-
ation or other scientific breakthroughs that can be related to the current EHR (Fig.
4.5, right). The service module displays the title and a little teaser text to allow
quick relevance assessment as well as an icon describing the type of the information.
To read the news, the user is directed to the services original site.

27

4.3 Information Sources

In order to provide the previously mentioned CDSS services, several potential in-
formation sources were identified. The selection of information sources is a critical
part in any CDSS application as they are the basis for the trust given them by phys-
icians. As patients’ health might also be depended on this information, the quality
and correctness of the information is obligatory. This section introduces a summary
of identified relevant sources for a CDSS and potential pitfalls when using them.

4.3.1 Literature Service Sources

Asked about what information sources they use, health personnel reported a wide
range of sources “with a strong preference for PubMed and UpToDate, as well as
Google” (Maggio et al., 2013, p. 206). PubMed is a free search engine for biomedical
databases with over 23 million publications and is perceived as the source for the
most up-to-date research by physicians. However, it is also considered as challenging
to use, especially in contrast to evidence-based summary services like UpToDate.com,
wich will be discussed in Section 4.3.2 (Maggio et al., 2014). Nonetheless, PubMed
is well-known in the medical community and frequently used. This could also be
observed during the interviews with medical students and resident physicians.

Apart from PubMed, there are many other databases and search engines that focus on
providing access to scientific medical publications. Differences between them include
the type and number of queried databases, the included journals, their access type
and the availability of an application programming interface (API). Appendix A
gives an overview of identified primary literature search engines and databases that
could be used in the scope of this thesis. It is however important to note that
collections of different services are not distinct. For example, PubMed also includes
articles from the Cochrane Database of Systematic Reviews.

4.3.2 Evidence-based Medical Recommendations

Evidence-based decision support services are often revert to as POC tools and com-
bine primary literature evidence into summaries, reviews and clinical guidelines.
They are designed to deliver “pre-digested, rapidly accessible, comprehensive, and

28

periodically updated information to health care providers” (Kwag et al., 2016). As
evidence-based reviews or summaries should be written by medical experts to ensure
quality and reliability, most services require a commercial licence or paid subscrip-
tion to access them. Only a few public and free sources could be found in the scope
of this thesis (Appendix B).

Kwag et al. (2016) assessed the quality and volume of 26 web-based POC informa-
tion summarisation services and concluded that BMJ Best Practice, Dynamed and
UpToDate showed the highest overall scores across all dimensions. Other examined
services that were advertised as evidence-based were less reliable which is why they
recommend to regularly asses the value and quality of used POC summary services.
Nearly a quarter of the 26 investigated services were newly identified in 2014 which
is a sign that the market is growing strongly. In an earlier study, Banzi et al. (2011)
analysed the updating speed of the five most highly ranked point-of-care information
summary services and found that DynaMedPlus was the most up-to-date service.
Yet, they point out that it is not clear if high updating speed is also correlated to a
better integration of this new information.

Selecting a data source for the EBM service might therefore not only depend on the
ability to include it over an API and its cost, but also on the quality and subsequently
the trustworthiness of the service.

4.3.3 Drug Information Sources

As drug information at the POC is an important topic, there are many services
providing drug information in the form of drug monographs, drug interactions
checker and other material. An overview of identified drug information sources can
be found in Appendix C. As stated in Rahmner et al. (2012), incomplete drug cover-
age or missing drugs negatively affect the confidence in the reliability of the system.
Therefore, the data sources would have to be carefully selected to ensure the highest
possible data quality.

Peters et al. (2015) investigated the quality of two public drug interaction sources
by comparing the drug interaction services DrugBank and NDF-RT. They found a
limited overlap between the two services’ reported drug interactions. The commercial
service used to compare against provided better coverage of the test interaction

29

set than both of the free services combined. Additionally, as of September 2016,
the second public data source NDF-RT removed the drug interaction information
from their service. Furthermore, DrugBank does not provide information on the
drug interactions’ severity. Taking these points into account one could assume that
commercial drug information services provide a better data quality.

Wang et al. (2010) investigated commercial drug interaction services and discovered
discrepancies among major services in identifying severe drug contraindications men-
tioned in the drugs’ black box warnings 1. They concluded that “[c]linicians should
consult multiple drug resources to maximize the potential for detecting a potentially
severe drug interaction” (Wang et al., 2010, p. 1).

Another approach to detect adverse effects is to aggregate individual adverse effects
reports using the OpenFDA data set. This data set can then be used to predict
possible adverse effects or drug interactions not mentioned in the drugs’ labels as it
is done in Bohm et al. (2016). However, the authors indicate that “[f]alse negative
and false positive warnings frequently occur” (Bohm et al., 2016, p. 13) and that it
is therefore important to also use other methods to detect drug interactions.

4.3.4 Clinical Trials

Several information sources for clinical trials were identified (Tab. 4.2). Although
no service provides an API to access its data, all of them have the possibility to
manually download a XML file containing all entries of a search.

As the clinical trials’ location plays a vital role in assessing their relevance, a data
source is needed that is not solely focused on one or a few countries. As the WHO
registry platform seems to aggregate data from many national registers and other
services, the choice would most likely fall on the WHO service.

4.3.5 Medical News

Many online services offer medical news, e.g. MedScape, ScienceDaily or Medical
News Today. Usually their content is not accessible over an API and there can

1A boxed warning is a special section on a drug’s package insert or label that resembles the
strongest warning type of a drug’s adverse effects, contra indications or interactions.

30

Name Description API Access Type Country

ClinicalTri-
als.gov

Trial registry from US National In-
stitute of Health. 39% are U.S. only
trials.

no Public &
free

Register Worldwide
with a fo-
cus on U.S.
(39%)

EU Clinical Tri-
als Register

Clinical Trials Register for trials in
the EU

no Public &
free

Register European
Union

German Clinical
Trials Register

German clinical trial register. Also
imports trials from clincaltrials.gov
that are located in Germany

no Public &
free

Register Germany

WHO Interna-
tional Clinical
Trials Registry
Platform

Search portal to central database with
links to original records. Regular fetch
of trials from currently 16 data pro-
viders, including sources mentioned
earlier

no Public &
free

Search
Service

Worldwide

Table 4.2: Identified data sources for the clinical trial locator

also be legal issues prohibiting any “unauthorized copy, reproduction, distribution,
publication, display, modification, or transmission of any part of this Service” (Sci-
enceDaily, 2016). An alternative to this might be the online social networking service
Twitter which is used by many medical news sites, conferences and medical profes-
sionals to publish and promote recent findings and other information. An advantage
of using Twitter might be the length limitations of 140 characters per “Tweet” which
forces their users to focus on the most essential parts of what they want to say.

31

Chapter 5

Software Architecture

This section describes the prototypical implementation and integration of the CDSS
into the existing EHR application described in the Introduction (Section 1.2). Not
all of the previously mentioned information services can be fully implemented in the
scope of this thesis. This is partly due to time constraints but is also attributed to
the fact that high quality medical data sources are often commercial products that
could not be gotten access to.

Section 5.1 provides an overview of the system architecture and its integration into
the EHR application architecture. Then, two of the proposed clinical decision sup-
port services from Section 4.2 are implemented with the Literature Service in Sec-
tion 5.2 and the drug interactions from the Drug Information Service in Section 5.3.
Section 5.4 introduces the Decision Support Controller which resembles the API
between client and business logic. Finally, Section 5.5 describes the user interface’s
architecture.

5.1 System Overview

The application is organised in a three layer architecture where each layer consists
of components that encapsulate logically separable units. The proposed CDSS will
be implemented as an own module in the business logic layer as well as in the client
layer of an already existing EHR application (Figure 5.1). Existing components are

32

surrounded by dashed lines while newly added components are rendered with solid
borders.

Figure 5.1: Three-layer system architecture

The different CDSS services like the literature or drug information service are sub-
components of the main decision support service module. To communicate with the
client decision support GUI, a new controller is added to the existing API module.
The data sources displayed on the right side are not part of the system but are
third party data sources that can be accessed over adapters. These adapters can be
used by any decision support service. CDSS specific data is persisted in the new
CDSS Metadata store. The EHR Store as well as the Term Store already exist in
the current application and both of them are used by decision support services.
The first allows storing EHR data in a standardised format and accessing the data
over an object relational mapper (ORM) tool (Humm et al., 2015). The latter is
used for storing an ontology for providing semantic autosuggest in the EHR and is
implemented using the open source search platform Apache Solr (Beez et al., 2015).

33

Similar to the business logic layer, a separate CDSS module that is implemented
alongside the EHR GUI encapsulates all CDSS logic on the client. The different
service panels are all subcomponents of this module. This enables the display of the
complete CDSS at any place in the EHR GUI.

5.2 Literature Service

To provide physicians with relevant (Requirement 1.1) and personalised (Require-
ment 1.2) information, a literature service was proposed in Section 4.2.1. This section
describes the architecture and business logic this CDSS service in more detail.

5.2.1 Overview

The literature service takes an EHR as the basis for query generation, issues this
generated query against a literature data source, retrieves the found literature and
processes it to allow a user-friendly presentation and improve retrieval quality. To
accomplish this task the service leverages an external dependency, the literature
data source.

Figure 5.2: Literature service system architecture

After a request to the API controller is made by the client, the entry point in the
literature service is the EHR Mapping component (Figure 5.2). The correct EHR
is fetched from the EHR Store and translated into a literature service internal rep-
resentation during EHR Mapping. This internal representation is the basis for the
creation of a query by applying two strategies, semantic rules as well as a machine

34

learning (ML) approach. The final query is sent to the literature data source and
the response is translated into an internal representation using the respective Ad-
apter. For each found literature, a teaser text is automatically generated using ML.
In order to provide users with a way to quickly navigate the found publications, the
publications are clustered and appropriate cluster labels are automatically gener-
ated. By filtering the generated cluster labels using the Term Store, a high cluster
label quality is achieved. The literature is then ranked by using stored user feedback
as well as similarity measures. Once displayed, users can give feedback on the use-
fulness and relevance of the found literature. This feedback is stored in the CDSS
Metadata store.

5.2.2 Data Source Selection

As outlined in Section 4.3.1, several potential data sources were identified that could
be used for the literature service. Well-known and trusted among physicians and
medical students is the search engine PubMed (Maggio et al., 2013, p. 2016). Its
extensive collection of around 24.6 million available records of which all abstracts
are publicly and freely searchable over an API, makes it well suited for integrating it
into an application. All the publications are manually indexed with medical subject
headings (MeSH) terms. MeSH is a controlled vocabulary or thesaurus maintained
by the U.S. National Library of Medicine (NLM). The MeSH terms are also used
for query expansion and allow to find publications that contain a synonym of the
search term instead of the search term itself. Additionally, it includes publications
from other databases like the Cochrane Database of Systematic Reviews. Although
other databases like Scopus might have a seemingly bigger collection of articles,
they often cover many scientific fields and are not limited to the health domain like
PubMed. A study comparing several medical databases, including PubMed, Google
Scholar and Scopus also states that “PubMed remains an optimal tool in biomedical
electronic research” (Falagas et al., 2008, p. 1). Due to all of the above mentioned
points, PubMed was selected as the data source for the literature service.

After selecting PubMed as data source, the question is wether to hold a copy of the
data in a local search engine or to use the PubMed search engine over the online
API each time a request is made (Table 5.1).

35

Local search engine PubMed online API

Pros
Always available Low maintenance effort
Customisation possible Low implementation effort
Potentially better query speed Query expansion using MeSH

Cons
High implementation effort Availability?
Keeping data set current No customisation of search

Unwanted changes?

Table 5.1: Pros and cons of using a local search engine vs PubMed online API

The decision is basically a make-or-buy decision. As such, the local search engine
solution has the typical pros and cons of a making a service instead of buying it.
It is always available and can be customised to fit exactly the need but it also
has a high implementation effort. Additionally, there are challenges in keeping the
data set up-to-date with PubMed as publications can be updated, e.g. when MeSH
terms are added. Querying PubMed takes around 4 to 8 seconds. That time might
be shortened if a local search engine is used. However, as PubMed includes a large
number of entries, appropriate hardware would be needed to store and query these.

Using PubMed as the search engine on the other hand provides an already implemen-
ted solution with low maintenance and implementation effort. It features a vector
space retrieval model and provides query expansion by using a controlled vocabu-
lary. Arguments speaking against PubMed include the dependency from the service
provider, especially considering the availability of the service and dependency on the
provider not making any unwanted changes. As PubMed is run by the U.S. govern-
ment institute NLM and is a trusted source for many physicians around the world,
there seems to be little risk for this. The availability of the service seems to be good,
however during the implementation phase the service was not usable one time.

In conclusion, as using a local solution will not provide significant benefits over
using the online solution, usingPubMed as search engine over the API is favoured
and selected for this thesis. If later requirements or changes in the PubMed services
make it necessary to switch to another solution, only a new Adapter will be necessary
to include the new data source.

36

5.2.3 EHR Mapping

Although the EHR is already stored in a structured way, it is first mapped to an
internal service representation in order to prepare the EHR for the use in a query.
From ca. 100 attributes that are currently used in the EHR application, not all
are helpful for getting personalised literature suggestions for a concrete patient.
Fields with no relevance like the patient’s name or procedures undertaken several
years ago are omitted in the EHR mapping. Other fields, like the clinical stage or
the ulceration field are modified during mapping. This filtering and modifying of
the individual EHR attributes is done by converting their values into SearchField
objects (Figure 5.3).

Figure 5.3: SearchField class

A SearchField object consists of a FieldName and the Value. The first indicates
the EHR attribute the object was generated from, the latter holds the actual string
representation of the EHR attribute. This value is later used to build the query.
Examples for this mapping are the clinical stage and the ulceration field. As the
clinical stage is just an enumeration consisting of roman numbers like “II” or “IV”,
the term “Stage” is added to the generated SearchField’s value. Similarly, the
ulceration field is stored as a boolean attribute in the EHR and a SearchField
containing the value “ulceration” is only created if the EHR attribute’s value is
“true”.

Translation of an EHR into an internal representation happens on each literature
service invocation in the EhrMapper. It is only invoked once per service call and
stores the SearchField list for later usage. The mapper provides a method to get
all terms identifying an EHR as well as one to get the values of a single EHR fields.
For example, getting the values for the EHR field “Medication” might return a list
of strings with the values “Warfarin” and “Ipilimumab”. The EhrMapper is passed
to various other components in subsequent processing steps and enables access to
the EHR terms if needed.

37

5.2.4 Query Generation Engine

As PubMed is selected as the source for the literature service, a PubMed query
is needed to find and display publications. To generate the query from the EHR,
two strategies are employed: use of semantic rules for creating queries from EHR
attributes and machine learning.

Semantic Rules

As mentioned earlier, non-relevant fields like the name or past procedures are already
ignored during EHR mapping. However, other fields like the issue type, prescribed
medications or current comorbidities are likely to return relevant results and are
therefore included in the query by using semantic rules (Figure 5.4). Note that only
a few sample rules are shown in the figure.

Figure 5.4: Sample query generation from an EHR using semantic rules

Rules try to meaningfully combine different EHR fields by combining all values of
an EHR field with an OR and adding additional search terms to the subquery. A rule
searching for publications that address the safety or efficacy aspects of the prescribed
medications from Figure 5.4 would therefore result in the following subquery:

1 ((Ipilimumab OR Warfarin) AND (safety OR efficacy))

Listing 5.1: Sample medication subquery generated by a rule

Another rule combines the comorbidities field with the medication field to search
for drug-related adverse effects and their treatment. If an EHR field’s value consist
of more than one word, it is surrounded by quotes to search for the specific term

38

and not the individual words. The basis for these rules are sample medical cases for
which physicians documented their search process and the found relevant literature.
By letting more physicians give feedback on other sample cases, additional rules
could be identified and added to the query generation.

To ensure data quality and only search for recent literature, restrictions are added
to the query like the “hasabstract[text]” to only show publications that contain an
abstract. Currently, the following restrictions are added:

• hasabstract[text]: Only search for literature that has an abstract.

• English[lang]: Only search for English literature.

• NOT letter[ptyp]: As sometimes letters are retrieved that hold no medical
evidence, ignore those.

• humans[MeSH Terms]: As PubMed also includes research on animals, this filer
ensures that only literature applicable on humans is retrieved.

• 2011/09/23[PDat] : 2016/09/23[PDat]: Limits the time scope of the re-
turned literature as recent publications are the relevant ones.

Machine Learning Approach

The presented rule-based approach returns good results in various cases as fields
like comorbidity, medication and issue are often relevant. However, in using a rules
approach only a predefined field of possible questions can be answered and other
fields like age, gender or the clinical stage could also in certain contexts return
relevant literature. Additionally, the above mentioned terms “safety” and “efficacy”
are only one example of additional query terms and other terms that are not captured
in the semantic rules could also become relevant. Another feature possibly becoming
relevant in the future might the preference of a specific publication type. Therefore,
a query expansion method is applied by automatically refining queries based on user
feedback. This is done using a machine learning approach.

Training The goal is to predict from the specific EHR which search terms retrieve
the most relevant and helpful publications. Therefore, the EHR resembles the ML
input whereas the potential search terms are the ML output to predict (Figure 5.5).

39

Figure 5.5: Training data creation from positive feedback

Training data for the machine learning is created from positive user feedback on
the relevance and helpfulness of individual publications for a specific EHR (see
Section 5.2.9). As input vector a BoW model is built from all EHR terms in the
stored positive feedback. Potential search terms for the ML output, are acquired
by extracting terms from the positively rated literature. This is done by leveraging
the EHR application’s medical ontology, the Term Store. All ontology terms that
could be identified in the literature are added to the list of potential search terms.
Additionally, the literature’s MeSH terms and all EHR field value’s appearing in the
literature’s title or abstract are also added to the output list.

The resulting ML problem is a multi-label classification problem as for each input
instance a set of outputs labels have to be predicted. This is where a SVM is selected
as it can provide multi-label classification and can deal with the high dimensionality
of the input and output.

Training is currently an offline step due to possibly long training times and the
fact that training only makes sense if there is enough training data, i.e. feedback,
available. The generated ML model as well as the input BoW and the output BoW
models are stored for later querying.

Querying For querying, the trained ML model is loaded and used to predict search
terms for an EHR. For that, the current EHR terms are again transformed into an
input vector using the stored input BoW model. As the BoW model only contains
terms from already known EHRs, potentially new EHR terms not yet appearing

40

in the input BoW are ignored until another training iteration. After predicting the
output terms, they are then used to search for literature. Both querying strategies
are used in conjunction and the generated queries are concatenated by an OR. The
final query is passed to the literature data source adapter which is described in more
detail in the next section.

5.2.5 Literature Retrieval

Leveraging the PubMedAdapter, the previously generated query is sent to the PubMed
search engine. The literature retrieval from PubMed is a two-step process where in
the first request a list of PubMed Ids (PMID) is returned. The second request then
utilises this list to fetch all found publications, their abstracts and other available
information in one XML document. By providing the correct sort order parameter,
the found literature is returned sorted by relevance. This means that publications
being more similar to the query are ranked higher. More on PubMed’s relevance
ranking in Section 5.2.8.

The XML results returned by the PubMed API are parsed into an internal literature
object representation. From each literature in the XML, a literature object is created
by only extracting fields needed in subsequent processing. Figure 5.6 shows the
Literature class’ attributes.

Figure 5.6: The literature class (UML)

As Id, the literature’s PMID is used. The literature’s title and abstract are adopted
without changes and stored as strings. If the abstract has a section specifying its

41

conclusion, it is saved in an extra field. MeSHTerms used for indexing a publication
are stored as a collection of strings. As the literature’s publication type describes
what kind of publication it is, e.g. a review, clinical trial or a journal article and a
literature can have multiple publication types, they are also saved as a collection of
strings. To display the different publication types in the client, boolean properties
are introduced for the most important types. In order to display the publication
year and journal information like the name, volume and issue, those XML fields are
combined into the property JournalString.

5.2.6 Teaser Text Generation

If a publication title catches a user’s attention, he may choose to read a teaser
text in order to easily assess its relevance. As an abstract usually consists of 500
or more words, displaying that will not provide any benefit over visiting the actual
PubMed site. Providing the conclusion of an abstract will better help in assessing
the relevance of a literature. Abstracts that are structured, i.e. have special sections
containing an introduction, background, results and a conclusion, can easily be used
to display the relevant sections to the CDSS user. However, not all abstracts in
PubMed are structured, about half of them consist of unstructured text. Therefore,
for publications for which the conclusion is not explicitly marked, a machine learning
algorithm is employed to predict the concluding sentences.

Training

To generate ML training data, the query in Listing 5.2 is used to retrieve all
melanoma-related publications from PubMed. From the 3,266 returned publications
with abstracts, 1,542 have a structured abstract and 1,725 an unstructured one.
Only the structured abstracts are used for ML training.

1 (melanoma [MeSH Terms] OR melanoma [All Fields])
2 AND (Clinical Trial[ptyp]
3 AND hasabstract [text]
4 AND humans [MeSH Terms]
5 AND English [lang])

Listing 5.2: PubMed query to retrieve all melanoma-related publications

42

As the goal is to determine if a sentence belongs to the conclusion or not, the
abstracts are split into individual sentences. Sentences that belong to the conclusion
of an abstract are marked as such. The individual sentences resemble the training
instances from which a BoW model is built. The ML goal is to classify each instance
into one of two classes, whether the instance is a concluding sentence or not. Similar
to the query term prediction the ML training is an offline step.

Querying

The generated model is used during parsing of the PubMed-returned XML to
Literature objects. The unstructured abstracts are split into sentences and for
each sentence an input vector is created using the BoW model created during train-
ing. Utilising the trained model, the label for each input vector is predicted. The
teaser text is created by combining all sentences of an abstract that were predicted
as belonging to the conclusion.

5.2.7 Clustering

Different users are interested in different topics and want to have different questions
answered. A one-fit-for-all ranking is therefore not sufficient. To accommodate this,
the result set is clustered to allow filtering the publications according to different
semantic criteria. Example filter labels include “Ipilimumab-induced Colitis”, “Ad-
verse Effects” and “Overall Survival”. For clustering the publications, the open source
search engine clustering server Carrot2 1 is used. It utilises specialised clustering al-
gorithms that automatically create meaningful cluster labels from the publications’
titles and abstracts.

Algorithm Selection

Carrot2 comes with three clustering algorithms, each having its own pros and cons.
Table 5.2 gives an overview of the three algorithms. As the aim of the clustering
approach is to get a better insight of the returned literature set, a high cluster
diversity is beneficial. Also, the better the cluster labels describe their documents,

1http://project.carrot2.org/

43

http://project.carrot2.org/

Feature Lingo STC k-means

Cluster diversity High, many small (outlier)
clusters highlighted

Low, small (outlier)
clusters rarely high-
lighted

Low, small (outlier)
clusters rarely highlighted

Cluster labels Longer, often more descriptive Shorter, but still ap-
propriate

One-word only, may not
always describe all docu-
ments in the cluster

Scalability Low. For more than about 1000
documents, Lingo clustering
will take a long time and large
memory.

High Low, based on similar data
structures as Lingo.

Table 5.2: Characteristics of Lingo and STC clustering algorithms (Osiński et al.,
2016)

the better the user can browse the literature set. As scalability or the clustering
speed is not that big of an issue with the relative small number of literature, the
clustering algorithm Lingo is selected (Osiński et al., 2004).

Preprocessing

Prior to sending the found literature’s titles and abstracts to the clustering al-
gorithm, some preprocessing is needed to ensure good cluster quality. Preprocessing
includes the removal of numbers, unnecessary terms and parentheses. Not all num-
bers occurring in an abstract are removed. If they are part of a term, as in “anti-
CTLA4 antibody” they are kept in the text as they hold some meaning that is
necessary to understand the potentially created cluster label. Other terms or ab-
breviations introducing noise are also stripped from the text, e.g. measuring units
like “mg/kg” or common terms with little benefit in meaning like “years” or “cells”.
Lastly, all parentheses and their enclosed contents are removed.

Clustering

The preprocessed abstracts are fed into clustering algorithm and results are parsed
to a list of Cluster objects. Their class is described in Figure 5.7.

Each Cluster is identified over an Id. The Score indicates how good the algorithm
estimates the cluster’s quality. The Phrases property contains the assigned cluster

44

Figure 5.7: UML of the class Cluster

label and Documents contains the Ids of the the cluster’s documents. The Rank
property is not filled during clustering but during ranking of results (Section 5.2.8).

Cluster Label Filtering

As generated cluster labels may not always be useful, a filtering approach is applied
using the EHR application’s medical ontology by querying the Term Store. Gener-
ated cluster labels are split into individual words and checked against the TermStore.
If at least one word of a cluster label is found in the ontology, the cluster label is
accepted, otherwise the whole cluster is discarded. To further fine tune the cluster
label filtering, a custom blacklist as well as a whitelist are added to the filtering
process. Occurrences of cluster label words in the whitelist are treated as if they
were found in the ontology and cluster labels consisting solely of terms found in the
blacklist are discarded. The custom whitelist contains terms like “survival”, “ad-
verse” or “therapy” that were manually detected and considered as helpful terms
occurring in cluster labels. Additionally, the list of terms describing the EHR are
added to it.

5.2.8 Result Ranking

Although there is an alternative way of browsing the literature set with the created
clusters and their labels described in the previous section, ranking of the literature
is still important. The most relevant literature should hereby be ranked higher than
the less important ones. Additionally, the generated cluster labels used for filtering
(Section 5.2.7) also have to be sorted. Ranking is employed by leveraging PubMed’s

45

weighted relevance score while also incorporating user feedback on the relevance and
quality of publications described in Section 5.2.9.

PubMed Rank

Since October 2013, PubMed provides the possibility to sort search results by rel-
evance. Hereby, a score is calculated for each literature depending on how many
search terms from the query are found in the literature and in which fields they
appear (NLM Tech Bull, 2013). PubMed uses several index fields for calculating
the relevance scores, e.g. the title, abstract and MeSH terms. The relevance score
calculation for a multi-term query is based on the following measures (NCBI, 2016):

• IDFfw: The global weight of a term w regarding the result set and index field
f

• TFfw: The local weight or term frequency of a term w in a specific field f .

• Wf : The weight of the field f , e.g. a term occurring in the title field would
have more importance than it occurring in the abstract.

• PW : The weight of the literature’s publication date. More recent publications
get a higher weight than older ones.

The score for each literature in the result set is calculated by summing for each
query term w in each index field f and multiplying the result by PW , the weight of
the literature’s publication date (NCBI, 2016):

IDFfw × TFfw ×Wf

By using the relevance sort option while retrieving literature from PubMed, the
publications most similar to the query are at the top of the query result, with a
slight preference of current publications. As PubMed does not provide the exact
numbers of the relevance score calculations, a rank is built based on the sort order
of the found literature: the publication retrieved first is assigned the rank 1, the
second one the rank 2, the third one the rank 3 and so on.

46

Feedback Rank

Additionally to the use of the relevance-based rank, collected user feedback is added
to the overall rank calculation. Using the stored feedback users may give on displayed
literature in an EHR, three different literature rankings are generated based on
the number and type of feedback a literature received. Feedback types consist of
negative feedback, positive feedback and passive feedback (Section 5.2.9) and ranking
is done by sorting the literature according to the number of feedback each has
received, subsequently building a rank with the highest feedback literature having
rank number 1.

Literature Service Rank Calculation

All of the previously mentioned ranks have to be merged together to form a new
ranking that can be used for displaying the found literature to the user. Agichtein
et al. (2006) mention a ranking approach where they ignore the original rankers
scores (i.e. the PubMed TF*IDF score) and instead just merge the rank orders
to integrate implicit feedback into the ranking. Similar to that approach, the four
rankings described earlier are combined into one merged score SM using the equation
in 5.1 with ranks R and weights W :

SM = 1
RP ubMed + 1

+ 1
Rpositive + 1 ×Wpositive

+ 1
Rpassive + 1 ×Wpassive

− 1
Rnegative + 1 ×Wnegative


= UserFeedback

(5.1)

Apart from the negative feedback, all feedback and PubMed ranks are summed
up. Negative feedback is subtracted from the sum. Each incorporated ranking is
multiplied with the specific ranking weight. The weights are heuristically tuned and
represent the relative importance of the feedback type. The found literature is sorted
descending by the calculated merged score SM .

Not only the found literature itself has to be ranked, the generated cluster labels
also have to be sorted in order to display them to the user. Hence, the cluster

47

ranks are calculated by building the average rank of their contained documents and
multiplying that with the Carrot2 cluster score. The latter is a measure provided by
the clustering algorithm that states how good the algorithm thinks the generated
label is.

5.2.9 User Feedback

There are two kinds of user feedback gathered in this application, active and passive.
Active feedback is generated by the users clicking on thumbs-up or thumbs-down
icons in the client. Passive feedback is gathered by logging and interpreting all clicks
on a publication. All feedback is stored in the CDSS Metadata store and is used for
the ranking of publications and clusters (Section 5.2.8) as well as to create training
data for machine learning (Section 5.2.4). All feedback is stored using one class that
holds positive, negative as well as passive feedback (Figure 5.8).

Figure 5.8: Literature feedback class

One can distinguish between the different forms feedback by looking at the two
boolean attributes. The attribute "PositiveFeedback" holds both the active feedback
types, i.e. positive and negative feedback. For identifying the feedback object, the
unique Id of the voted literature is stored. As EHRs change over time and a feedback
is always specific to an EHR at a certain point in time, the terms describing the
EHR are also saved upon user feedback. For saving user feedback and filling the
EhrTerms property, the user feedback component utilises the EhrMapper to convert
an EHR to the list of EHR terms.

48

5.2.10 User Interface

The literature service displays the found literature and the generated clusters to the
user. To not confuse the user, clusters are called filters as this term is better known
among users (Figure 5.9). The red numbers are not party of the interface but are
used to describe the figure.

Figure 5.9: Literature service user interface

No filter is initially selected and only 7 filters are displayed, the rest is available over
clicking the “Show all filter” link (1). On clicking a filter, the filter is rendered bold,
the displayed literature filtered accordingly and a link to clear the filter is displayed
behind the status message (2). The status message indicates how many publications
are currently displayed. On clicking the link to clear the filter, the initial literature set
is shown again. A found literature is displayed with its title and journal information,
including the publication year (3). The title links to the literature’s PubMed page
and the light grey symbol behind the title indicates the link leading to an external
website. The previously mentioned special publication types like “Clinical Trial” or
“Review” are shown in bold behind the journal information. EHR terms occurring in
a literature’s title or teaser text are marked for quick reference. Teaser texts can be
displayed by hovering over the eye icon and a legend indicates the function of this eye
icon to the user (4). To give users the possibility to give feedback, each publication

49

features thumbs-up and thumbs-down icons. On clicking them, they change style
and become filled and the feedback is send back to the server.

5.3 Drug Interaction Service

The drug interaction service is part of the greater drug information service which
provides drug information at the point of care (Section 4.2.3). The drug interaction
service checks a patient’s prescribed medications but also additionally added ones
by the user for interaction’s among. Figure 5.10 shows the architecture of this drug
interaction service.

Figure 5.10: Drug interaction architecture

A drug interaction search starts automatically in the background once a user opens
a patient’s EHR in the client. A request is sent to the Decision Support Controller
which fetches the patient’s medication and invokes the Drug Interaction Service
with a list of drug names. The drug interaction services uses this list and queries
the data source before returning a collection of DrugInteraction objects to the
client. The DrugInteraction class contains the interacting drugs, a description of
the interaction and its severity (Figure 5.11).

Figure 5.11: DrugInteraction class

50

5.3.1 Data Source Selection

Section 4.3.3 and Appendix C listed and discussed different sources for drug in-
formation data, including sources to acquire drug interaction data. As it is not
possible in this thesis to use commercial data sources, only six of the identified
drug information sources remain: Drugs.com, Electronic Medicines Compendium,
MedScape, DailyMed, DrugBank and RxNav. As Drugs.com prohibits its integration
into any kind of IR system and Electronic Medicines Compendium as well as Med-
Scape do not provide an API and only contain natural language texts, three services
remain. Although DailyMed contains current package inserts of marketed drugs in
the U.S. and also provides an API, the specific drug interaction information is still
in a natural language form. This leaves RxNav as DrugBank is queried directly
by RxNav. An API allows easy integration into the application and the included
RxNorm service normalises drug names between different drug dictionaries. This
is an advantage as other drug information sources using different drug dictionaries
could be added in the future. Unfortunately, DrugBank and therefore also RxNav
does not provide any information on the severity of drug interactions. As the sever-
ity is important for the usability of and trust in a CDSS system, the selection of
a commercial data sources would most likely be preferable for a live EHR system.
However, for the sake of the prototypical implementation, RxNav is chosen as data
source.

5.3.2 Drug Interaction Search

Apart from the earlier mentioned automatic search for interactions among prescribed
medications, the user also has the possibility to search for additional drugs and their
potential interactions with the prescribed ones. The actual search is not different
to the initial one and consists of two steps. First, the supplied drug names or drug
ingredients have to be translated into a form that can be used to query the drug
interaction data source. Therefore, the drug normalisation service RxNorm is used
to search for the unique drug identifier RxCui. If a drug could not be resolved
to an RxCui, nothing is returned and the drug is therefore not included in the
drug interaction checking. Second, the generated list of RxCuis is used to query
for interactions using the RxNav API. The API’s result is parsed back to a list of
DrugInteraction-objects and returned to the client for displaying panels and alerts.

51

5.3.3 Drug Interaction Interface

The drug interaction interface allows users to add additional medication to the
interaction checking and see details about the found drug interactions (Figure 5.12).

Figure 5.12: Drug interaction panel

Initially, only the drugs currently prescribed are checked and displayed in the panel.
The user has the option to enter additional drugs, for example the ones that are
planned to be prescribed. To aid the user, the EHR application’s ontology is quer-
ied and possible matches displayed in an autosuggest box (Figure 5.12, top). On
selecting an option, the search is automatically started again. The user can how-
ever also initiate the interaction search over the “Check” button. Additional drugs
are rendered in a box that also features an icon to remove the specific drug from
the interaction checking. Found interactions are displayed in a list and hovering the
information icon on the right provides more information of the interaction.

In addition to the drug interaction panel, severe drug interactions should be shown
as a well visible alert. Unfortunately, as the selected data source does not provide
severity data for its interactions, for now all found interactions are displayed.

52

5.4 Decision Support Controller

All communication between the client layer and the business logic layer is routed
through the EHR application’s API. As each EHR service has its own API controller,
the decision support system also features a Decision Support Controller. It is
responsible for handling requests made by the client and calling the appropriate
business logic, i.e. decision support services with the correct parameters. Currently,
three different endpoints are handled by the controller:

• SearchLiterature: To search literature for a specific EHR, an EHR iden-
tifier has to be supplied in the request. Using that, the Decision Support
Controller fetches the correct EHR with all depended fields from the data-
base. The fetched EHR is then passed to the literature service and the results
returned to the client.

• LiteratureFeedback: To save feedback on a literature, the EHR identifier
and a Literature Feedback object (Figure 5.8) are supplied in the client’s
request. After fetching the EHR, the feedback object is sent to the literature
service’s user feedback component (Section 5.2.9) to process and store the
feedback. A response indicating the correct saving of the feedback is returned
to the client.

• GetDrugInteractions: The drug interactions endpoint takes a request hold-
ing the patient Id as well as an optional list of additional medication. Using the
patient Id, the correct patient is retrieved from the database and its currently
prescribed medications fetched. The drug interaction service is invoked by sup-
plying the fetched medications as well as the provided additional medications
list. The found list of drug interactions is returned back to the client.

5.5 GUI Architecture

Although most logic is implemented in the business logic layer, the client layer also
needs some to ensure a good user interaction. The CDSS is realised as a complete
Decision Support Module where each individual CDSS service represents its own
subcomponent. Every module can send alerts or reminders over the alert bus which
will be collected in the CDSS controller and displayed in the CDSS view. Other CDSS

53

subcomponents also consist of a controller and a view. The individual controllers
are responsible for communicating with the correct API endpoints of the business
logic layer. The single services could therefore be easily extracted from the Decision
Support Module and displayed at any other point in the EHR.

Figure 5.13: Client GUI architecture

54

Chapter 6

Implementation

The application is implemented in C# using .NET and MS SQL Server on the server
side, and in HTML5 / CSS / JavaScript on the client side, using the frameworks
Bootstrap and AngularJS. As this is already used in the development of the current
EHR application, the CDSS also leverages this technologies.

Two of the proposed CDSS modules were implemented as part of this thesis. Sec-
tion 6.1 describes the implementation of one of them, the literature service. The
implementation of the drug interaction service is explained in more detail in Section
6.2.

6.1 Literature Service

Section 5.2 described a literature service that finds and retrieves relevant and helpful
literature fitting a specific EHR. This section illustrates special implementation de-
tails of this service. Entry point into the literature search is the EhrMapper described
in Section 5.2.3. It translates the EHR which is distributed over different database
objects into a flat list of SearchField objects for easier handling in subsequent
processing steps. A reference of this EhrMapper is given to the the QueryGenerator.

55

6.1.1 Query Generation Using Rules

Section 5.2.4 proposed the idea of using rules to query for relevant literature. The
QueryGenerator implements this functionality and takes an EhrMapper as input.
To allow dynamic building of rules, a composite pattern is introduced (Figure 6.1)
that enables the creation of a query expression tree.

Figure 6.1: Query expression composite pattern

The composite pattern allows clients to treat individual objects and compositions
uniformly. The abstract class Expression is extended and its abstract methods im-
plemented by all subclasses. The Operation class contains a collection of Expression
objects resembling the operands of a operation. The actual operation classes like And,
Or and Not hold little additionally information and simply extend the Operation
class. The StringOperand class does not have a collection of Expression objects
and does therefore not have any descendants as it usually forms the leafs of an ex-
pression tree. To allow easy iteration of the trees, the StringOperand and the Not
operation do have the appropriate boolean flags set to true, indicating their type.
All classes feature a method called Accept that can be called by the Iterator and
accepts the Visitor. The Iterator is responsible for traversing the expression tree
whereas the Visitor builds the actual query by visiting the nodes and adding the
appropriate query parts according the the visited node’s class. Building an expres-
sion tree can be done manually as in Listing 6.1 or by using the RuleQueryBuilder.

The RuleQueryBuilder construct the expression tree by calling different methods.
This enables a clear internal representation of rules and should allow to add new
rules more quickly. The class provides three method types to add rules:

56

1 new And(
2 new StringOperand (" Ipilimumab "),
3 new Or(
4 new StringOperand (" safety "),
5 new StringOperand (" efficacy ")
6)
7)

Listing 6.1: Query expression tree creation

• AddRule: Add a rule by providing the operation (AND, OR, NOT) and its op-
erands. Operands can either be a list of EhrFields or a list of string search
terms.

• AddExtendedRule: This allows to add a rule by providing the operation (AND,
OR, NOT), the EhrField and additional search terms as strings.

• AddRestriction: Allows adding query restrictions that are added to the query
with an AND, effectively reducing the result set as the term has to occur in each
publication returned.

The EhrFields are fetched from the EhrMapper and the values of one field concat-
enated with an OR. On building the expression tree, all rules are concatenated with
an “OR”, effectively increasing the results while the restrictions are added with an
“AND”, effectively reducing the number of results. While getting the EhrField val-
ues from the EhrMapper, values containing more than one word are surrounded by
quotes whereas the rest is usually added to the query without quotes. This enables
the search engine PubMed to use query expansion on the non-quoted terms while at
the same time ensuring that multi-word terms are searched for in whole. A sample
rule and its output can be seen in Listing 6.2.

1 queryBuilder . AddExtendedRule (new And (), EhrField .Medication ,
↪→ " safety ", " efficacy ");

2 // Result :
3 //((Ipilimumab OR Warfarin) AND (safety OR efficacy))

Listing 6.2: Sample query rule creation

57

6.1.2 Predicting Search Terms Using Machine Learning

To facilitate machine learning and predict suitable search terms, Accord.NET ’s1

one-against-all multi label SVM is used. Basis for the training data is stored user
feedback on the relevance of publications.

Training Mode

Training of the SVM is currently initiated over the test project. The actual training
data is gathered from positive feedback which is iterated over. To generate the input
vector, two lists are needed. One to hold all EHR terms occurring in all feedback
instances and one to hold the EHR terms of the individual feedbacks. Each individual
feedback resembles a training instance and could therefore be seen as the rows of
the input vector. Figure 6.2 illustrates this for better understanding.

Figure 6.2: Sample conversion of feedback instances to an input vector

Listing 6.3 shows the actual implentation of creating the two lists and using them
to create the input vector. First, all feedback is gathered from the database (line
1) and the two lists are initialised (line 2 and 3). Iterating over the feedbackList
allows to fill the two lists accordingly. They are used to initialise a BoW object (line
16) that is subsequently used to populate the actual input vector (line 19 - 22). The
double array inputs is then used in subsequent training of the SVM.

1 var feedbackList = FeedbackDao . FindAllFeedback ();
2 var allEhrTerms = new HashSet <string >();
3 var feedbackEhrTerms = new List <List <string >>();
4 foreach (var feedback in feedbackList)
5 {
6 // Compute all features for the input

1http://accord-framework.net/

58

http://accord-framework.net/

7 var tmpList = new List <string >();
8 foreach (var term in feedback . EhrTerms)
9 {

10 tmpList .Add(term. ToLower ());
11 allEhrTerms .Add(term. ToLower ());
12 }
13 feedbackEhrTerms .Add(tmpList);
14 }
15 var inputBagOfWords = new BagOfWords (allEhrTerms . ToArray ());
16 var inputs = new double [feedbackList .Count][];
17 // Populate the inputs and outputs
18 for (var i = 0; i < feedbackList .Count; i++)
19 {
20 var inputArray = inputBagOfWords . GetFeatureVector (

↪→ feedbackEhrTerms [i]. ToArray ());
21 inputs [i] = IntToDoubleArray (inputIntArray);
22 }

Listing 6.3: Data preparation to build input vector

Building the output vector is very similar to the construction of the input vector.
However, the terms used to do so first have to be extracted from the positively voted
literature. Therefore, the literature has to be fetched from PubMed again. As there is
a high possibility that some publications occur several times in different feedbacks,
a caching strategy is applied by filling a dictionary with the PubMed Id and the
extracted terms of a literature. As a result, the term extraction has to be done only
once per literature. The actual term extraction is bundled in the TermExtraction-
class. The most important resource for terms describing a literature are a literature’s
MeSH terms. They are assigned by humans and usually provide a better quality than
terms acquired using NLP tools. However, especially recent publications are not yet
indexed with MeSH terms. Therefore, another approach is needed to extract terms
describing the specific literature.

Using the open-source NLP library OpenNLP2, the literature’s title and abstract are
split into sentences and then tokenised. The code displayed in Listing 6.4 iterates
over those tokens and searches for matches in the EHR application’s ontology by
trying all possible token combination lengths. This code is part of the previous thesis
by Beez (2015).

2https://github.com/AlexPoint/OpenNlp Note: This is not officially affiliated to the Java-
based Apache OpenNLP toolkit.

59

https://github.com/AlexPoint/OpenNlp

1 var returnValue = new List <Term >();
2 while (tokens .Count > 0)
3 {
4 Term currentTerm = null;
5 for (var i = 1; i <= tokens .Count; i++)
6 {
7 var searchFor = StringFromList (0, tokens , i);
8 var foundTerms =

↪→ TerminologyService . QueryAllCategories (searchFor);
9 var term = Find(searchFor , foundTerms);

10 if (term != null) currentTerm = term;
11 }
12 if (currentTerm != null)
13 {
14 returnValue .Add(currentTerm);
15 }
16 tokens . RemoveAt (0);
17 }
18 return returnValue ;

Listing 6.4: Identifying ontology terms (Beez, 2015)

As ontology terms often consist of more than one token, a search for each individual
token might not yield the desired results. Therefore, the sentence’s tokens are it-
erated over in a while-loop (line 2) and the first token in the collection removed
after each iteration (line 16). Inside the loop, another loop iterates from 1 to the end
of the token collection. Inside the for-loop, a string is built with the tokens from
the beginning until the current iteration of the for-loop. This effectively allows to
search for all possible token concatenations and is visualised in Figure 6.3 for clarity.

Figure 6.3: Algorithm illustration for identifying ontology terms

Taking a list of three tokens as an example, three possible token concatenations are
possible in the first loop. The Token in the box with a solid line is one combination,

60

the tokens in the dashed box a second one and the tokens in the dotted box the third.
Because after each while-iteration the first element of the token list is removed, the
second while-loop starts with the second token. Each of the concatenated token
combinations are used to query the EHR application’s TermStore (line 8). As the
TermStore also returns entries that contain more words than it was searched for, only
entries that match exactly the search terms are further processed (line 9). As longer
words should describe the literature more specific than short ones, the variable in
line 4 is overridden if a new term is found.

In addition to the MeSH terms and the term extraction from abstracts and titles,
all the EHR terms occurring in the literature are also added to the output term
collection. This enables searching for EHR terms that are not used in the rule-based
approach and would therefore be forgotten. Before returning the extracted terms
used for the output vector, all duplicates are removed.

Once the input as well as the output vector are created, a multi-label SVM is
initialised, trained and serialised as a binary file to disk using a BinaryFormatter.
Alongside the trained SVM model, the input and the output BoW model is stored.
They are later used during querying to translate an EHR into a feature vector to
predict fitting search terms.

Query Mode

When search terms have to be predicted for an EHR, the serialised SVM model is
deserialised into a C# object again. The input BoW model that was stored alongside
the SVM is used to create a feature vector of the current EHR which is given to
the SVM model for search term prediction. As the SVM returns predictions as a
boolean array, the output BoW model is again used to transfer the boolean array
into a list of search terms by iterating over the boolean array and comparing the
array’s indices with the BoW model’s indices. The actual predicted search terms are
added as a rule to the rule query by concatenating them with an OR.

6.1.3 Literature Retrieval from PubMed

After the query is created the literature has to be retrieved from PubMed. This is
a two-step process as first the literature’s PMIDs have to be searched using the

61

eSearch API and subsequently fetched using the eFetch API. All communication
with PubMed happens over the adapter class PubMedApi.

Searching PMIDs

The first step is ususally to search for literature Ids over the eSearch API. Therefore,
a HTTP request is prepared and issued against the API endpoint3. Several para-
meters are added to the request: the encoding, the database to query, the format
in which the results should be returned, the query, the sort order and the number
of results to return. When adding the query to the request, all spaces are replaced
with a “+” and the return mode is set to “json”. The “sort” parameter is set to
return results in relevance based order. An optional parameter allows specifying the
maximum result size. By default this value is set to 70. As indicated with the re-
turn mode parameter, the result is in JavaScript Object Notation (JSON) format
and contains a list of PMIDs. The JSON is parsed and the PMIDs extracted using
Json.NET 4. The extracted PMIDs are subsequently used to fetch the literature and
to identify the literature in the application.

Fetching Literature

The second step is retrieving and parsing literature over the eFetch API5. The
method in the PubMedAPI class takes a list of PMIDs and queries the API endpoint.
In contrast to the literature search, the HTTP request parameters are set to “XML”
as return mode and “abstract” as return type. Instead of the query, the list of
relevance-ordered PMIDs is provided as parameter. The returned XML is parsed
into Literature objects (Figure 5.6) using the PubMedXMLParser class:

If the retrieved XML does not have a root node with the name “PubmedArticleSet”,
an error is thrown. As the individual publications are contained in that one XML, it
is split into individual articles by iterating over all children of the root node. Each
child node is processed using XML Path Language (XPath) which is built into C#.
The values of the XML nodes PMID, article title, article abstract and if available
its conclusion are directly assigned to the newly generated Literature object. The

3https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi
4http://www.newtonsoft.com/json
5https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

62

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi
http://www.newtonsoft.com/json
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

JournalString is built by using different XML nodes like the journal title, journal
volume, journal issue and the publication year. All MeSH terms are collected and
only distinct values added to the Literature object. The same happens with the
publication types. Additionally, if one of the types is either a clinical trial, case report
or review, the Literature object’s boolean variables ClinicalTrial, CaseReport
or Review are set to true.

Literature Caching

To speed up the fetching process, the found literature is cached using .NET’s
MemoryCache class. Using the PubMedCache wrapper class, the fetched literature is
added to cache with its PMIDs as identifier with a sliding expiration date of two
days. This means that if in two days no request is made for a particular PMID, the
literature is removed from cache. If however a request is made, the expiration date
is updated. On subsequent literature fetch requests, the literature is first searched
for in the cache and retrieved if found. All PMIDs that could not be found in cache
are sent to PubMed to be retrieved and are then also added to the cache for later
querying.

6.1.4 Teaser Text Generation Using Weka

After searching and retrieving literature from PubMed, teaser texts have to be gener-
ated. For already structured abstracts, the sections marked as conclusions are taken
as teaser text. For unstructured abstracts a ML approach was proposed in Section
5.2.6.

Technology Selection

To implement this, the open-source machine learning software suite Weka6 is em-
ployed. This selection was made for several reasons:

• Preprocessing and ML algorithms. It features a comprehensive collection of
ML algorithms and preprocessing techniques.

6http://www.cs.waikato.ac.nz/ml/weka/

63

http://www.cs.waikato.ac.nz/ml/weka/

• GUI. The ML suite provides a GUI that allows easy and comfortable testing of
different preprocessing strategies, ML algorithms and their parameters. This
also allows to create a ML model using the GUI and use that model from
within the application.

• String2WordVector. It already provides a filter to transform strings into word
vectors which is needed to create the BoW model.

• Sparse Vectors. Especially in text processing the input vectors can grow ex-
ceptionally large which results in a lot of RAM being used. Weka provides a
possibility to build and use sparse vectors7 which results in considerably lower
RAM consumption.

Weka is written in the Java programming language and thus runs on almost every
modern operating system. However, it has to be integrated into the existing EHR
application which is written in C#. The recommended way by the Weka team is
to use IKVM.NET 8 in order to run Weka. IKVM.NET implements a Java Virtual
Machine (JVM) in the Microsoft .NET Framework and also provides a .NET imple-
mentation of the Java class libraries. This allows to call the java-based Weka code
directly from C#, while also providing the possibility to ship Weka as a project
dependency. This can be achieved by compiling the Weka .jar file into a Dynamic
Link Library (DLL) using the IKVM command ikvmc <filename>.jar.

Data Preparation

As already described, all abstracts have to be split into sentences. The structured
ones only one time to build the training data and the unstructured ones each time the
literature search is triggered. To split abstracts into sentences, a open-source NLP
library is used9. However, only splitting the texts into sentences without further pro-
cessing results in noisy data as conclusions are often the place where non-medical
information is put. An example for this are clinical trials that have fragments like
“ClinicalTrials.gov number, NCT01024231.” in their conclusion. This is not desirable
to show as a teaser text. Therefore, the sentences are tokenised and the resulting

7Sparse vectors use a special format where only the occurrence of a word is stored. This results
in considerably smaller vectors.

8https://www.ikvm.net/
9https://github.com/AlexPoint/OpenNlp

64

https://www.ikvm.net/
https://github.com/AlexPoint/OpenNlp

tokens POS tagged. By removing all sentences without a Verb, the data quality
can be drastically enhanced. Listing 6.5 outlines the code used to do the sentence
splitting and filtering.

1 public IList <Sentence > SplitIntoSentences (string text)
2 string [] sentences = SplitSentences (text);
3 var processedSentences = new List <Sentence >();
4 var position = 0;
5 foreach (string sentence in sentences)
6 {
7 string [] tokens = TokenizeSentence (sentence);
8 string [] tags = PosTagTokens (tokens);
9 if (ContainsVerb (tags))

10 {
11 // Calculate relative position in Text
12 var newSentence = new Sentence (sentence);
13 newSentence . Position = (100 / sentences . Length) *

↪→ position ++;
14

15 // Add sentence to return value
16 processedSentences .Add(newSentence);
17 }
18 }
19 return processedSentences ;
20 }

Listing 6.5: Sentence splitting and cleansing using a POS tagger

Line 2 calls the NLP library’s EnglishMaximumEntropySentenceDetector which
splits the provided text into individual sentences. Iterating all of the sentences, each
of them is tokenised and the tokens assigned their POS tags (line 7 & 8). If the
sentence contains a verb, it is added to the return collection. Apart from the actual
sentence text, the sentence’s position in the abstract is also calculated and stored
(line 13). In order to generate the training data it was also checked if the sentence
belongs to the conclusion by comparing it against the actual structured conclusion
text. As this was a one time offline step, it is not shown here.

The sentence splitting as well as the POS tagging need trained models to split
sentences or assign POS tags. Unfortunatly, the POS tagger’s API expects a string

65

containing the file path to the trained model. This is insofar problematic as the
designated runtime for the EHR application is a web server and accessing local
files can be difficult due to user permissions and security settings. Therefore, the
trained models are put into the C# project’s Resources folder which means they are
included in the compiled assembly when building the application. One can access
these resources over calling Properties.Resources.xyz where xyz is the actual
resource. However, this returns a byte array which is not possible to pass to the NLP
library’s sentence splitter and POS tagger as they expect a file path. As a solution, a
wrapper class for creating and deleting temporary files is introduced (Appendix D).
When objects of this class are disposed, they automatically remove the temporary
files they created in the the runtime’s temporary folder. By creating the temporary
file in a using statement10, the created object is automatically disposed off and the
generated temporary file is therefore deleted after the using block ends.

After splitting the abstracts into sentences, they have to be transformed into the
Attribute-Relation File Format11 (ARFF) that can be read by Weka (Listing 6.6). It
consists of a header containing the name of the relation (line 3), the list of attributes
with their data types (lines 5-7) and a data part containing the actual ML data (line
9-13). The created ARFF relation contains three attributes: the sentence’s position,
the sentence text and whether or not is is a concluding sentence.

Preprocessing and Algorithm Selection

Using the created ARFF file, an input vector is created from the sentence at-
tribute by using Weka’s StringToWordVector-filter. It tokenises the sentences and
constructs a BoW model. The parameters of the filter include the option to lower-
case all tokens, which stemmer, stop words handler and tokeniser to use and how
many words to keep in the created BoW model. Altering these parameters does have
a noticeable effects on the quality of the resulting ML model. Finding the best pre-
processing strategies and ML algorithm for a particular ML problem is usually an
iterative process. To test which strategies and algorithms were fitting best for this
task, several parameter settings and two algorithms were tried. As ML algorithms,
a Naïve Bayes and a SVM are selected as they usually provide good results in text
mining settings.

10https://msdn.microsoft.com/en-us//library/yh598w02.aspx
11http://www.cs.waikato.ac.nz/ml/weka/arff.html

66

https://msdn.microsoft.com/en-us//library/yh598w02.aspx
http://www.cs.waikato.ac.nz/ml/weka/arff.html

1 private static StringReader CreateArffFile (IList <Sentence >
↪→ sentences)

2 {
3 StringBuilder arff = new StringBuilder (" @relation

↪→ ’predict -conclusion ’\n");
4 // Attributes
5 arff. AppendLine (" @attribute pos numeric ");
6 arff. AppendLine (" @attribute sentence string ");
7 arff. AppendLine (" @attribute conc {False ,True}");
8 // Data
9 arff. AppendLine ("@data");

10 foreach (var sentence in sentences)
11 {
12 arff. AppendLine (sentence . Position + " ,\"" +

↪→ sentence .Text. Replace ("\"", "") + "\", False ");
13 }
14 return new StringReader (arff. ToString ());
15 }

Listing 6.6: ARFF file creation

Stemming the sentences’ words showed no benefit, even seemed to worsen results
and was therefore not further investigated. This is a similar observation to the one
that Huang et al. (2013) made. They described that if more than 500 features were
used, “there is no significant difference between the performance of classifiers that
use a stemmer and those that do not.” (Huang et al., 2013, p. 945). Table 6.1 shows
the performance of the two selected algorithms with four different preprocessing
strategies.

Feature StopWord Naive Bayes SVM
Selection Removal P R F1 MCC P R F1 MCC

N Y 0.928 0.931 0.929 0.716 0.933 0.920 0.924 0.728
Y Y 0.921 0.915 0.917 0.687 0.926 0.916 0.919 0.703
N N 0.945 0.946 0.945 0.783 0.935 0.928 0.930 0.742
Y N 0.919 0.914 0.916 0.680 0.931 0.924 0.927 0.725

Table 6.1: Model performance to predict concluding sentences

The used data set had 19,141 instances which were split at 66% into training and
test sets. The number of words to keep for the input vector was set to 2,000 words as

67

this is still within the dimensions a normal computer can handle. Setting the word
limit to a higher value lead to slow processing and spontaneous crashes of the JVM
as the computer’s RAM limit was reached during training while also not providing
much of a prediction benefit. It can be observed that using Naive Bayes algorithm
without feature selection, stop word removal and stemming showed the best results
with a F1-measure of 0.945 and MCC of 0.783. Additionally, training and using a
Naive Bayes-model is considerably faster than that of a SVM.

The resulting ML model is subsequently used during querying to predict the con-
cluding sentences of an unstructured abstract. Similar the the NLP library’s models
in the previous section, the generated ML model is also stored in the project’s Re-
sources folder and accessed over the TempFile-class outlined in Appendix D.

6.1.5 Literature Clustering with Carrot2

There are two possible ways to integrate the clustering engine Carrot2 into the C#
EHR application. Either using it directly from code by running it in IKVM.NET,
or by hosting a Carrot2 document clustering server (DCS) and querying that over
a REST API. Both strategies are officially supported. Table 6.2 compares the two
integration possibilities. The performance tests were made on a sample collection
of 70 publications and a Windows 10 virtual machine with a 2x2.30GHz CPU and
4GB of RAM running on a SSD. Using Console.Write() calls, the clustering times
were captured and rounded to seconds.

Carrot2 DCS Carrot2 .NET API

Scalability High, as server can be in-
dependently scaled up or
down

Low, as clustering shares
resources with rest of EHR
application.

Caching Yes No

Performance (cluster-
ing time)

Cold cache: 4 seconds,
warm cache: 2 seconds

3 seconds

Table 6.2: Running Carrot2 as a server vs. running it in IKVM.NET

68

As the clustering quality should be the same with both solutions, it comes down to
which solution offers the best clustering speed, its scalability and the convenience of
using the solution. If just looking at the clustering time performance, no clear solu-
tion can favoured over the other. The DCS is slower on cold cache but outperforms
the IKVM.NET -solution when using a warm cache. In terms of scalability, using a
separate server is definitely more scalable than using the local implementation. Ad-
ditionally, clustering on a server will not use resources that are needed by the actual
EHR application. Also, none of the two solutions is clearly more or less convenient
than the other. One could argue that when using a server, you have the overhead of
a HTTP request. Nonetheless, in the end the Carrot2 DCS is used as it seems the
be the cleaner solution.

Querying the Document Clustering Server

As the Carrot2 DCS is selected as clustering solution, the documents as well as the
parameters to tune the clustering algorithm have to be send over a HTTP request.
Therefore, all retrieved Literature objects have to be serialised into one XML file
that can be used to query Carrot2. This can be done by using .NET ’s native XML
serialisation. Before doing so, each literature’s abstract is preprocessed by using
regular expressions to remove numbers and the contents of parentheses. As a result,
the clustering algorithms will return better results due to less noisy documents. The
generated XML is added to the HTTP request as a parameter.

To tune the clustering algorithm, the specific settings are also added as HTTP
request parameters. The following settings are used for clustering the Literature
objects and were identified by trying different settings, looking at clustering results
and subjectively judging the clustering quality:

• min cluster size: The minimum size of clusters to create. No clusters with
less documents than this value are created. Value: 3

• maxWordDf : The maximum document frequency of a term. If a term appears
in more than x% of documents, ignore it. Value: 0.7

• scoreWeight Balance between the cluster score and the cluster size. The
resulting value will be used to order the clusters. Value: 0.7

69

• factorizationfactory: The method to create term-document matrix to gen-
erate cluster labels. Value: partial singular value decomposition factory

Additionally, the parameter “algorithm” with value “lingo” is provided to indicate
the algorithm to use.

Cluster Filtering

The clustering server’s JSON response is deserialised into a list of Cluster objects
using the Json.NET ’s12 JsonConvert. Each Cluster object holds a list of literature
Id’s that occur in the cluster. The Ids are plain Integers without a reference to
the actual Literature object. The mapping between clusters and an individual
literature happens only in the client.

The generated clusters are filtered as mentioned in Section 5.2.7. After initialising
the whitelist and blacklist, the EHR terms are added to the whitelist. Then, for each
cluster the labels are split at non-alphanumerical characters and foreach resulting
term the filtering is done. The first check is to test if the term is a whitespace or
occurs in the blacklist. If that is the case, processing continues checking the next term
in the cluster label. If the term occurs in the whitelist, immediately return true, stop
processing the cluster label and keep the cluster. The third check includes querying
the comparably slow TermStore to leverage the EHR application’s ontology. If the
term is found in the ontology, the cluster is also kept. As this is done after checking
the black- and whitelists, the Term Store does not have to be queried for each term
which speeds up the processing.

6.1.6 Saving Feedback

Details about the literature feedback were already discussed in Section 5.2.9. How-
ever, one implementation detail is how the feedback is saved to the CDSS Metadata
store. All database communication in the EHR application happens over the object-
relational mapping (ORM) framework Entity Framework 6 (EF6) As the code-first
principle is followed, usually no manual alterations to the database, tables or its
fields are necessary. In fact, most entities that are stored in the database are auto

12http://www.newtonsoft.com/json

70

http://www.newtonsoft.com/json

generated by a code generator and the database created accordingly as described by
Humm et al. (2015).

The property EhrTerms of the LiteratureFeedback class (Figure 5.8) stores a list
of strings. As this is supposed to be saved in the database and EF6 is not able to
save collections of primitive types like IList<string>, another approach is needed.
As seen in Listing 6.7 the collection of strings in line 2 is flattened to a string
by concatenating the list by commas (line 5). As EF6 calls the get method of
EhrTermsAsStrings upon persisting, the value of EhrTerms is serialised to a string,
effectively only storing the EhrTermsAsString in the database. While creating the
LiteratureFeedback objects from the database, the set method in line 6 is called
and the EhrTerms list filled by splitting the saved string at the commas.

1 public class LiteratureFeedback : AbstractEntity {
2 public ICollection <string > EhrTerms { get; set; }
3 public string EhrTermsAsString
4 {
5 get { return EhrTerms == null ? "" : string .Join(",",

↪→ EhrTerms); }
6 set { EhrTerms = value.Split (’,’). ToList (); }
7 }
8 // ...

Listing 6.7: Saving a collection of primitive types in EF6

6.1.7 Literature Service View Component

Following the mockups from the interaction concept in Section 4.2, the decision
support GUI is implemented using the JavaScript framework AngularJS13 and the
HTML and CSS framework Bootstrap14. The decision support service front end is
separated into components according to the individual CDSS services. Views are
typically implemented in HTML while the controllers use JavaScript. Both leverage
AngularJS features like the two-way data binding between views and controllers.

After the EHR data is loaded, a request against the CDSS API controller is made
containing the id of the currently opened EHR. This happens asynchronously while

13https://angularjs.org/
14http://getbootstrap.com/

71

https://angularjs.org/
http://getbootstrap.com/

the EHR is already displayed. As loading of the CDSS should not distract the user,
no spinner indicates that the service is searching for literature. Instead, a single
String is shown in the service panel stating “Searching Literature...”. Once the data
is returned by the CDSS API, the publications are parsed to highlight text, the
publications and clusters are assigned to AngularJS variables and appropriate status
messages are displayed.

Filtering Literature

On clicking a filter, the function setActiveFilter() is executed. It fetches the
clicked filter from the list of all filters and changes its attribute active to true.
Due to the two-way data binding of AngularJS, this is responsible for rendering the
filter differently in the view. Additionally, the function extracts the filter’s associated
documents from it and assigns them to the variable documentFilter. As a result,
only publications with an Id occurring in the documentFilter variable are displayed.
This is realised by using AngularJS ’ ng-repeat with a filter function that utilises
the documentFilter variable.

Search Term Highlighting

Before displaying the publications, the previously mentioned highlighting of EHR
terms is executed to allow quick identification of relevant terms. This functionality is
implemented completely in JavaScript. The response form the CDSS API includes
the EHR terms, which are used to mark them in the publications’ titles and ab-
stracts using the function in Listing 6.8. Basically, each EHR term is searched in
the provided text using a regular expression (line 6). If it is found in the text, it
is surrounded with HTML <mark> tags that are rendered in a special way in the
browser (line 8). The function .each() in line 5 is part of the JavaScript library
Underscore.js15. The highlight() function is only executed once per publication.

15http://underscorejs.org/

72

http://underscorejs.org/

1 function highlight (text) {
2 if (_. isEmpty (vm. ehrTerms)) {
3 return text;
4 }
5 _.each(vm.ehrTerms , function (term) {
6 var regex = new RegExp (term , ’gi’);
7 text = text. replace (regex , function (match) {
8 return ’<mark >’ + match + ’</mark >’
9 });

10 });
11 return text;
12 }

Listing 6.8: Function to highlight EHR terms in publications

Responsiveness Improvements

Initial user interactions in the client showed a rather disappointing responsiveness.
This was due to the number of displayed publications and the complicated rendering
behind it. To improve performance, the number of publications initially displayed is
limited to 10 publication. By leveraging the ngInfiniteScroll module16, more public-
ations are only loaded from the controller once the user scrolls down and approaches
the end of the currently loaded publication list. This leads to a significantly better
interface responsiveness.

6.2 Drug Interaction Service

The drug interaction service is invoked by the REST API controller that provides
a list of currently prescribed Medication objects as well as list of Strings with
additional medications that the user entered in the GUI (Section 6.2.2). These two
lists are used to search for drug interactions (Section 6.2.1).

16https://sroze.github.io/ngInfiniteScroll/

73

https://sroze.github.io/ngInfiniteScroll/

6.2.1 Drug Interaction Search

The medication names are extracted from the Medication objects and the list of
all drug names, the currently prescribed as well as the additionally provided ones, is
used to query RxNav in order to find the specific drug identifiers (RxCui). For each
medication, a new request has to be made and the medication name is appended to
the query as a GET parameter.

The returned RxCuis are extracted and used to make another RestSharp request to
the drug interaction endpoint by concatenating all RxCuis with a “+” and adding
the resulting string to the request as a GET parameter. All requests to RxNav’s
REST API are made using RestSharp17, a simple REST and HTTP API client for
.NET. It provides the possibility to deserialise the returned JSON or XML into
appropriate C# objects. For both requests there is a C# class tree describing the
returned XML or JSON that is used deserialise the request’s HTTP response. As
those classes are too verbose and contain unnecessary information, they are trans-
lated into DrugInteraction objects (Figure 5.10) and then send to the client.

6.2.2 Interaction Interface

Similar to the literature service GUI component, the drug interaction interface is
also implemented using JavaScript and HTML and also consists of a view and a
controller. After the EHR is loaded, a request is made asynchronously to the CDSS
API and the response is used to display the found drug interactions. If no interactions
are found, a string with the content “No interaction found” is displayed.

Autocomplete

The user has the option to add additional drugs to the interaction checking using
the EHR application’s autocomplete feature, a modified version of ngTagsInput18.
The search function extracts the drug names from the autocompleted input tags
and queries the CDSS API by providing the patient Id and an array of Strings

17http://restsharp.org/
18http://mbenford.github.io/ngTagsInput/

74

http://restsharp.org/
http://mbenford.github.io/ngTagsInput/

containing the additional drugs. This is started automatically each time a drug is
added or removed by calling the search function.

Interaction Alerts

For severe interactions an alert should be displayed. Alert handling is managed in
the CDSS main GUI interface that also loads all implemented CDSS service panels.
The interaction controller emits a message with the name “cdss.alert” and a data
object containing the interacting drugs and a short description of the interaction.
The CDSS main controller listens for these “cdss.alert” messages and manages the
adding of new and deleting of old alert messages. All alerts are displayed in the
CDSS main view by utilising the AngularJS function ng-repeat.

75

Chapter 7

Evaluation

This section evaluates the proposed CDSS by comparing concept and prototype
implementation with the Requirements defined in Chapter 2. Requirement 1.2 (per-
sonalised) and 1.3 (pro-active) are obviously met since the CDSS information is
displayed automatically based on the EHR currently being handled. Also, require-
ment 1.5 (Workflow) is met, since the CDSS panels can be separated from the EHR
dialogs. Assessing the Requirement 1.1 (relevant), 1.4 (easily comprehensible) and
2.1 (usable) is less obvious and needs feedback from users. Therefore, an initial
survey with 4 medical students and 1 resident physician was conducted.

7.0.1 Usability Tests and Initial Survey

Users were given the task to prepare for a multidisciplinary team (MDT) meeting
using the different CDSS modules. They were observed while doing so and should
communicate what they were thinking while using the system. Subsequently, they
were to fill out a questionnaire to assess the usability aspects and relevance of the
CDSS services implemented in the prototype as well as in the interaction concept.

The usability test with the participants revealed some weak points that were, sub-
sequently, improved. For example, the teaser text’s icon position was initially not
prominent enough and was easily overlooked. Therefore, its position was moved
after the literature’s title and a legend was added. Another point that was intro-
duced after conducting the usability tests was the automatic drug interaction search
after the user added an additional drug in the drug interaction panel. Users were

76

initially confused why they had to explicitly press the button in order to search for
interactions.

The initial survey indicates positive feedback. Its specific question and the answers
can be seen in Appendix E. The participants could answer each question by choosing
a number on a scale from 1 to 5 where 1 meant “not helpful” or “do not agree” and
5 meant the opposite. Positively mentioned were the display of the teaser text for
assessing literature relevance, searchable adverse effects, the EBM recommendations
service and the clinical trial locator service. Not considered as important were the
news service and the display of non-severe drug interactions. Concerning the literat-
ure service, the participants agreed that the found publications would be helpful to
prepare for a MDT meeting, that they were up-to-date and that the display of the
teaser text helped in assessing the publications’ relevance. However, the question
if the literature service would be helpful in daily clinical care was answered with
an average of 3.6 points. This is insofar strange as participants answered the first
question (“In order to prepare for a MDT meeting, where the found publications
helpful?”) with 4 points in average. This result is probably caused by the lack of
clinical experience of some participants. As they did not know the answer to the
question, they tended to rate the question with 3 points. An option indicating “do
not know” or something similar would have be better here.

Another interesting observation concerns the question if non-severe drug interac-
tions should also be displayed in the EHR. The comparably high standard deviation
indicates some disagreement among the participants. Interestingly, the group of res-
ident physicians did not think a drug interaction service as relevant and did not
want to see non-severe drug interactions. The reasons for this can only be guessed
and is subject to further investigation.

7.0.2 Response Time

When opening EHR for the first time initial loading of literature data may take
up to 15 seconds. However, as this happens asynchronously while the consultant is
working with EHR this will not interfere with the EHR workflow. With the cach-
ing of Literature objects, this initial loading time is reduced to 4 seconds when
opening the same EHR a second time. Finding and displaying of drug interactions is
independent of that and usually takes about 2 seconds. As soon as all data is loaded

77

and the physician enters the CDSS, each interaction is less than 200 ms which meets
Requirement 2.2 (low response time) clearly.

7.0.3 Extensibility and Maintainability

Concerning Requirement 2.3 (extensible), the component-based system architecture
and the use of adapters to access information sources enables the extension of the
CDSS and implement other decision support modules with moderate implementation
effort. New EHR fields can be easily adopted by adding them to the EhrMapper and
integrating them with a rule, if desired. For a new data source one would have to
implement an additional adapter which results in about 100 lines of code (LOC).
For a new decision support module the service on the server and the client GUI
would have to be implemented. For the client this would require about 300 LOC.
The server implementation depends on the module’s complexity, e.g. the literature
service has 2,500 LOC whereas the interaction service has about 200 LOC.

7.0.4 Literature Service Document Retrieval Evaluation

As the proposed literature service is basically a document retrieval task, it is eval-
uated as such. However, assessing the relevance of a publication is not an easy task
and can only be done by domain experts. Even then, the votes differ depending on
the individuals knowledge levels. Usually, several experts are asked to evaluate the
retrieved publications and then an agreement measure like the Kappa Statistic is
calculated to see how much agreement among those experts exists (Manning et al.,
2008, p. 164). Unfortunately, only the feedback of one medical student was available
to evaluate the retrieval quality of the literature service.

The task was to asses the relevance of the found literature for each of the three
test cases and give feedback using the literature service’s feedback buttons. Most
of the retrieved publications were relevant to the patient as can be seen with the
calculated average precision of 0.745. Leveraging this feedback, two different rankings
can be evaluated. The first is the ranking prior to any feedback, henceforth called the
PubMed Ranking. The second ranking leverages this user feedback and incorporates
it into the ranking of the found literature (Section 5.2.8). This is referred to as

78

Feedback Ranking. Figure 7.1 shows the precision-recall curves of those two ranking
variations.

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

Recall

P
re
ci
si
o
n

PubMed Ranking
Feedback Ranking

Figure 7.1: Precision-recall curves for ranked retrieval in the literature service

The graphs show the average precisions from three test cases. Although small, it
can be observed that using the user feedback to modify the initial PubMed ranking
resulted in an overall better retrieval quality. Also, the two curves seem to be similar
in the first few recall levels but diverge at a recall level of around 0.5. This means
that relevant documents are successfully ranked higher than non-negative ones.

79

Chapter 8

Related Work

The idea of CDSS is not new and there exist many services accessible over the
browser and/or smartphone applications. Their scope ranges from drug informa-
tion, drug interaction and diseases to guidelines, pill identification and alternative
medications. Example services include UpToDate, Epocrates, MedScape and First
Databank. Often, the integration of theses services into an EHR system consists
of providing a standard search field that enables the users to search and visit the
CDSS service’s main webpage. Some EHR systems like Athenahealth’s EHR1 include
context-sensitive drug monographs that provide information like dosing, adverse ef-
fects and other key safety data directly in the EHR. However, there are systems that
include include the patient’s context in the CDSS search. The integration of UpToD-
ate into various EHR systems provides such a future by displaying an info button in
various EHR locations and providing an automatic search2. However, this function
delivers standard UpToDate results pages and problems mentioned earlier in this
work like confusingly written texts and difficulties navigating the long summaries
remain (Obst et al., 2013).

Finland’s Evidence based Medicine electronic Decision Support (Nyberg, 2012) is
a platform-independent online service that accepts structured EHR data as input
and returns clinical decision support data like links to guidelines, therapeutic sug-
gestions, clinical reminders and alerts. These rules can be created by experts in a
web-based editor and scoped per organisation or globally. It can also populate forms

1http://www.athenahealth.com/enterprise/epocrates/clinical-decision-support
2http://www.uptodate.com/home/hl7

80

http://www.athenahealth.com/enterprise/epocrates/clinical-decision-support
http://www.uptodate.com/home/hl7

and calculators with patient specific data. They do not include a literature search
service but provide other services like the drug alerts that are similar to services
presented in this work. Additional services like the knowledge assistant would be
relevant in the context of this work and could later be integrated into our proposed
CDSS.

Alternative approaches for the task of finding literature fitting to a patient’s case
has been described in different publications. Perez-Rey et al. (2012) propose a visual
browser extension that allows the user to select a subset of extracted search terms
from a natural language medical record. These selected terms will then be used to
search PubMed. However, the selection of search terms is not automatic or pro-active
as the user has to interact with the application to build the search.

Soldaini et al. (2015) propose a CDSS that tries to find fitting medical literature
for medical case reports instead of EHRs. They consider the natural language case
report as the query and apply query reformulation techniques like query reduction
by identifying medical terms and expansion by using pseudo relevance feedback to
build the search. They try to best answer the case report (ca. 60 words) by providing
relevant literature. In contrast to this work they do not use PubMed as search engine
but use a local search server.

To the best of our knowledge, no system integrates a literature search system into
an EHR to display relevant medical literature. Similarly, we believe there is no
implementation of a patient-specific search service for clinical trials.

81

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, a CDSS was proposed to satisfy information needs at the point of care,
especially in the context of personalised medicine. First, physician’s information
needs were gathered by studying scientific papers on the topic in Section 4. Based
on that, a user interaction model was proposed that tries to satisfy the identified
information needs by introducing serval CDSS services. After giving an overview of
potential information sources that could be used for the CDSS, the CDSS software
architecture was described in more detail with a focus on the literature service
and the drug interaction service in Chapter 5. The literature service leverages a
rule-based in combination with a machine learning approach to generate PubMed
queries. Found literature is processed by preparing a teaser text as well as filters
to quickly navigate the literature set. Special focus was also on how to effectively
display the found data to the user. Another service architecture was described with
the drug interaction service that leverages RxNav as data source and allows users
to manually add additional drugs to search for interactions.

Those two services’ implementation was detailed in Section 6 with a focus on
language-specific details and encountered difficulties while implementing. In Chapter
7 the proposed CDSS was finally evaluated against the initially described require-
ments. It could be shown that all of the requirements were met. However, the eval-
uation only featured 5 participants of which 4 were medical students. A study with

82

medical experts might yield different results and is highly recommended by the
author of this study.

Particular focus has been on the usability of the CDSS allowing consultants to
quickly and intuitively gather relevant information with minimal system interac-
tion. This includes but is not limited to the automatic extraction of a literature
abstract’s conclusion using ML, the marking of EHR terms in found literature titles
and abstracts, the creation of clusters to filter the literature set and usability tests
with users to see where confusion might occur.

Personalised medicine in general offers great promises for treatment response predic-
tion and physician decision making and can therefore significantly improve patients’
health and safety. Numerous medical information sources are already available which
can be utilised, and they are growing rapidly. However, it seems that those sources
are not yet fully integrated and used in day-to-day clinical practise although the
integration of decision support service into clinical software yields many benefits.
With the concept and a prototypical implementation of a CDSS for personalised
medicine presented in this paper, a contribution towards this direction is made.
May this work eventually help consultants improve patient care.

9.2 Future Work

It is planned to integrate the CDSS presented into a commercial EHR application
suite for melanoma treatment. Towards this end, future work is required. Additional
information services as presented in the interaction concept (Section 4.2) need to
be implemented. A comprehensive analysis of the CDSS with consultants in the
field needs to take place resulting in potential improvements of the concept and the
implementation. Also, trial phase with real patient data is necessary to extend the
data base for machine learning and get realistic user feedback.

9.2.1 Additional CDSS Services

New CDSS services include the display of context sensitive medical calculators. An
example for this would be to calculate right drug dosing for elderly patients with
impaired renal function using the glomeral filtration rate (Rahmner et al., 2012).

83

In order to provide the right calculators at the right time, close work with experts
in the field is necessary. Another point Rahmner et al. (2012) mentioned were pa-
tients’ hypersensitivities. Study participants said that if a sensitivity is detected, the
system should prohibit prescription. This is the only time when the system actively
interacts instead of just providing guidance and decision support. In order to provide
this functionality, the EHR application would need information on a patient’s hy-
persensitivities in the form of a new EHR field. Additionally, it would make sense to
store this kind of information not in a system in one health organisation, but rather
encourage the use of interpretability and information exchange between systems of
different health institutions. This would meet the definition of an EHR mentioned
in Section 3.2.

9.2.2 Standards and Service Architecture

Apart from the CDSS services introduced in the Interaction Concept, CDSS modules
from other clinical decision support providers like UpToDate.com or EBMeDS could
be integrated into this system. To do so, it would be beneficial to follow specific
clinical decision support standards like the HL7 Decision Support Service standard1.

Additionally, as current developments in the domain of CDSS architecture tend
to adopt a service architecture approach, this could be adopted for the proposed
CDSS. In a service architecture, the clinical information system information is clearly
separated from the CDSS and connected over standardised service-based interfaces
(Sanchez, 2014, p. 45). While the CDSS proposed in this work already tries to
separate the EHR from the CDSS by using the EhrMapper, efforts could be increased
to create for example a web-based CDSS that can be used from a variety of systems.
This approach is similar to the one EBMeDS is employing and allows to support a
wide range of clinical systems.

9.2.3 Extending the Literature Service

Several improvements and extension can be made to the literature service. First,
most EHR fields should be used and mapped in the EhrMapper. Then, additional
rules incorporating these fields would be created in cooperation with medical experts.

1http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12

84

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12

As rule queries are created using expression trees that are built from a composite
pattern, this rule creation could be made more dynamic. There is even the possibility
to allow users to define rules that could be used in conjunction with the already
existing ones.

Learning to Rank

In the proposed literature search service ranking of results is done by using vector-
space-based features like the inverse document frequency in combination with active
and passive user feedback. Both of those relevance assessment measures are then
combined by applying weights that have to be manually adjusted. The actual order
of publications therefore depends on those weights and needs constant intervention
in the source code of the literature search, at least until good weights are found. A
more desirable approach would be to train a ML algorithm to learn those weights
or to rank the found literature according to a learned model. That technique is used
by many popular search engines and referred to as a learning to rank task. Other
features describing the literature could be included in the ranking, e.g. the impact
factor of the journal or the Altmetric2 score indicating how many people are talking
about a publication.

Personal Feedback and Literature Search

Once the EHR application features a user management functionality, the feedback
given by a specific user could be stored and displayed whenever he/she revisits the
specific literature. Additionally, a more personalised literature search strategy would
be possible as information demand probably differs from person to person depending
on their level of experience and knowledge. The feedback of a user could therefore
be used to create a personalised search.

Machine Learning Training

Training of the SVM is currently initiated over the test project. However, once
the EHR application features a user management and different user groups, an

2https://www.altmetric.com/

85

https://www.altmetric.com/

administrator could be given the possibility to initiate SVM training over the GUI.
Another approach is to automatically trigger SVM training once a certain amount
of feedback is gathered. As one would have to make sure that training happened not
during the application’s peak usage times, a combination of both approaches might
be beneficial where an administrator gets a notification and can decide when to do
another ML run.

Better Term Extraction

The current solution for extraction ontology terms from literature uses the EHR
applications Term Store. However, that solution is rather slow as many possible
terms are created and searched for in the Term Store. This has two disadvantages.
First, this leads to a lengthy process during the ML training for query term predic-
tion. Second, while the ML query prediction is trained, the Term Store might not
respond as fast as desired to autosuggest calls from the actual EHR application. As
these should never be slowed, another approach to identify terms in a literature is
desirable. Therefore, Named Entity Recognition tools like MetaMap3 could be in-
tegrated to identify medical concepts in a text. Another possibility is to use solely
the literature’s MeSH terms instead of extracting terms from title and abstract. For
publications that are not yet indexed with MeSH terms, a ML approach could be
applied to predict the right terms.

9.2.4 Drug Interaction Data Source

As already stated earlier, the data source for the drug interaction service is not
usable in a production systems as no information about the interaction severity is
provided. Further work has to be done in order to find and integrate an appropriate
data source. This will probably be a commercial solution.

3https://metamap.nlm.nih.gov/MetaMapLite.shtml

86

https://metamap.nlm.nih.gov/MetaMapLite.shtml

Appendices

87

Appendix A

Literature Service Data Sources

This table lists the identified data sources for the literature service. “Public & free”
access means only the access to the search interface and abstracts. Full publica-
tions are nonetheless sometimes only available after payment. Also, the volume and
availability of an API could not be identified for all databases.

Name Description API Access Volume

Cochrane
Library

Collection of health-
related databases. Its
core is Cochrane Reviews,
a database of system-
atic reviews and meta-
analyses.

? subscription ?

Google
Scholar

Search engine for sci-
entific publications of
all fields. Automatically
crawls many journals.

no public & free estimated at 160 mil-
lion articles

Ovid Science search platform
that includes many data-
bases, including MED-
LINE.

? subscription ?

88

PubMed Search engine mainly
accessing MEDLINE
database and focused
on health topics. Query
expansion by using MeSH
ontology.

yes public & free > 24.6 million records,
about 500,000 new
records each year

ScienceDirect Website with access to
large database of sci-
entific publications from
many fields.

yes free (abstracts),
subscription
(full-text)

12 million records
from 3,500 journals
and 34,000 eBooks

Scopus Database with abstracts
and citations from many
academic journals and
many scientific fields, not
focused on health topics.

yes paid
subscription

~60 million records,
>21,500 peer-reviewed
journals

Springer API Access to all Springer
published journals, also
includes BioMedCentral
open-access publications.

yes partly free,
partly

subscription

~2,000 journals and
>6,500 books per
year, access to >10
million online docu-
ments

89

Appendix B

EBM Recommendation Sources

Name Description API Access Volume

BMJ Best Prac-
tice

Evidence-based information to
offer step-by-step guidance on
diagnosis, prognosis, treatment
and prevention.

yes subscription ?

DynaMedPlus Evidence-based clinical over-
views and recommendations.
Content updated daily. Also of-
fers calculators, decision trees
and unit and dose converters.

yes subscription > 3,200
topics and >
500 journals

EBMeDS Platform-Independent web ser-
vice CDSS with EBM module

yes commercial

Essential Evid-
ence

POC system with topics,
guidelines, abstracts, and sum-
maries of most common clinical
cases. Also links to other re-
sources like Cochrane Library
and Evidence-Based Medicine
Guidelines.

? subscription > 13,000
topics,

guidelines,
abstracts &
summaries

Medscape /
eMedicine

Largest clinical knowledge base
available freely. Articles up-
dated yearly. Also available as
mobile application.

no free,
registration
required

~6,800
articles

90

Physician Data
Query

Cancer database from the U.S.
National Cancer Institute. Con-
tains peer-reviewed information
on cancer treatment in the form
of summaries for patients and
professionals.

no public Only cancer
domain

UpToDate Popular evidence-based POC
tool for a wide range of discip-
lines but targeted on internal
medicine. Extensive peer-review
process to ensure accurate and
precise recommendations.

yes subscription,
some articles

free

~8,500 topics

91

Appendix C

Drug Information Data Sources

The following table lists identified drug resources. With the column title Drug In-
formation, all drug related material like dosing, adverse effects, administration in-
formation, pill images and patient information is understood. As there are data
sources that specifically target drug interactions, adverse effects or drug announce-
ments and recalls, those three are stated separately. The column “Access” describes
how the content can be accessed. “Public & free” means no cost occur and there is no
registration needed. Some services are free but require a registration. Subscriptions
mean paid access to the sources. The term “commercial” describes other payment
methods than subscription.

92

Name Description API Access D
ru
g
In
fo
rm

at
io
n

D
ru
g
In
te
ra
ct
io
ns

A
dv

er
se

Ev
en
ts

D
ru
g
A
nn

ou
nc
em

en
ts
/R

ec
al
ls

DailyMed Website by U.S. National
Library of Medicine (NLM),
provides high quality and up-
to-date drug labels. Updated
daily by FDA. Documents use
structured XML format.

yes public & free 3 3 3

DrugBank Database with pharmacological
drug information on drugs and
their targets. Longer update
periods. Links to DrugBank for
nearly all drugs on Wikipedia.
Drug interactions feature no
information on their severity.

yes public & free 3

Drugs.com Website with drug information,
pill identification and drug in-
teraction checker for patients
and for health professionals.
Also provides data on modified
drug labels. Prohibited to in-
corporate into any kind of IR
system.

no public & free 3 3 3

Electronic
Medicines
Compen-
dium

Information on drugs licensed
for use in the UK. Contains
Summaries of Product Charac-
teristics and Patient Informa-
tion Leaflets

no public & free 3 3 3

Epocrates Point-of-care medical informa-
tion about drugs, diseases and
diagnostic tools over website or
mobile app. Also features news
feed of product announcements
and medical news.

no partly free /
subscription

needed.

3 3 3 3

93

MedlinePlus
Connect

Service by NLM, provides un-
structured natural language
drug information/labelling and
health topic overviews

yes** public & free 3* 3*

Medscape Many clinical information re-
sources available over website
or mobile app. Articles updated
yearly.

no free,
registration
required

3 3 3

OpenFDA
API

Public API on reported Adverse
Effects, drug labelling and drug
recall reports. Data consists of
individual reports and has to be
aggregated in order to use it.

yes public & free 3 3

ResearchAE Adverse effects experimental
research application based on
OpenFDA data. Not to be used
in clinical settings.

no public & free 3 3

RxNav Provides access to different
drug resources like RxNorm,
NDF-RT and DrugBank. Drug
normalisation over different
codes and systems by using
RxNorm, drug interactions from
DrugBank.

yes public & free 3

SIDER Aggregated data on side effects
for drug target prediction from
publicly available sources. In-
frequent updates. Download of
dataset possible.

no public & free 3

Wolters
Kluwer Clin-
ical Drug
Information

Commercial drug information
APIs including interaction, ad-
verse effects, indications and
mapping to RxNorm.

yes commercial 3 3 3

* = Unstructured data/natural language text; ** = Only to search
for links to the articles

94

Appendix D

Temporary File Wrapper

The following code represents the wrapper for temporary files. The class implements
the IDisposable interface and deletes the generated temporary files when the object
is either disposed or garbage collected.

1 public class TempFile : IDisposable
2 {
3 private string _path;
4

5 public TempFile (byte [] bytes) : this ()
6 {
7 File. WriteAllBytes (_path , bytes);
8 }
9

10 public TempFile () :
↪→ this(System .IO.Path. GetTempFileName ()) { }

11

12 public TempFile (string path)
13 {
14 if (string . IsNullOrEmpty (path)) throw new

↪→ ArgumentNullException ("_path");
15 this._path = path;
16 }
17

18 public string Path
19 {
20 get
21 {
22 if (_path == null) throw new

↪→ ObjectDisposedException (GetType ().Name);

95

23 return _path;
24 }
25 }
26 ~ TempFile () { Dispose (false); }
27 public void Dispose () { Dispose (true); }
28 private void Dispose (bool disposing)
29 {
30 if (disposing)
31 {
32 GC. SuppressFinalize (this);
33 }
34 if (_path != null)
35 {
36 try { File. Delete (_path); }
37 catch { } // best effort
38 _path = null;
39 }
40 }
41 }

96

Appendix E

Evaluation Survey

The evaluation user survey was conducted with 4 medical students and 1 resident
physician. They were to answer the following questions by choosing a number from
1 to 5, with 1 being the lowest answer option and 5 the highest.

Question Average Median Std. Dev.

Literature Service

In order to prepare for a medical dis-
cussion meeting, were the found pub-
lications helpful?

4 4 0.707

Were the found publications up-to-
date?

4.6 5 0.547

Did the found publications match the
patient at hand?

3.2 3 0.447

Did the filters help you in finding pub-
lications?

3.8 3 1.095

How satisfied were you with the qual-
ity of the filters? Did they accurately
describe the displayed publications?

4 4 0.816

How useful did you find the display of
the abstract’s conclusion?

4.6 5 0.894

How would you rate the user-
friendliness of the system?

4.25 4 0.5

97

Could you imagine the literature ser-
vice as helpful in daily clinical care?

3.6 4 0.547

Drug Interaction Service

Relevancy of such a service integrated
into the EHR.

4.2 5 1.304

Non-severe interactions should also be
displayed in the EHR (i.e. in a separ-
ate panel for non-severe interactions)

3.4 4 1.817

Drug Information Service

By looking at the layout, I think I
would find all information I would
need to prescribe a specific drug and
inform the patient.

4.4 4 0.548

Such a service would be useful in an
electronic health record.

4.6 5 0.548

A service that allows searching all
adverse effects of a patient’s drugs
could help in clinical situations.

4.8 5 0.447

Other

Consider the field of melanoma treat-
ment. Would a service that searches
for relevant nearby clinical trials be
helpful?

4.2 4 0.447

A service that provides evidence-based
guidelines and reviews on treatment
and diagnosis could be helpful.

4.4 5 0.894

A news service that displays latest
news related to the patient could be
useful.

3.6 4 1.140

98

Bibliography

Academy of Medical Science (2015). Stratified, personalised or P4 medicine: a new
direction for placing the patient at the centre of healthcare and health education.
Tech. rep. url: https://www.acmedsci.ac.uk/viewFile/564091e072d41.
pdf.

Agichtein, E., E. Brill, and S. Dumais (2006). “Improving web search ranking by
incorporating user behavior information”. In: Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval. ACM, pp. 19–26. isbn: 1595933697.

Baldi, P., S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen (2000). “Assessing
the accuracy of prediction algorithms for classification: an overview”. In: Bioin-
formatics 16.5, pp. 412–24. url: https://www.ncbi.nlm.nih.gov/pubmed/
10871264.

Banzi, R., M. Cinquini, A. Liberati, I. Moschetti, V. Pecoraro, L. Tagliabue, and L.
Moja (2011). “Speed of updating online evidence based point of care summaries:
prospective cohort analysis”. In: BMJ 343, p. d5856. doi: 10.1136/bmj.d5856.

Beez, U. (2015). “Terminology-Based Retrieval of Medical Publications”. Thesis.
University of Applied Science Darmstadt.

Beez, U., B. G. Humm, and P. Walsh (2015). “Semantic AutoSuggest for Electronic
Health Records”. In: 2015 International Conference on Computational Science
and Computational Intelligence (CSCI), pp. 760–765. doi: 10.1109/csci.2015.
85.

Berner, E. S. (2009). Clinical Decision Support Systems: State of the Art. Tech.
rep. Agency for Healthcare Research, Quality (U.S. Department of Health, and

99

https://www.acmedsci.ac.uk/viewFile/564091e072d41.pdf
https://www.acmedsci.ac.uk/viewFile/564091e072d41.pdf
https://www.ncbi.nlm.nih.gov/pubmed/10871264
https://www.ncbi.nlm.nih.gov/pubmed/10871264
http://dx.doi.org/10.1136/bmj.d5856
http://dx.doi.org/10.1109/csci.2015.85
http://dx.doi.org/10.1109/csci.2015.85

Human Services). url: https://healthit.ahrq.gov/sites/default/files/
docs/page/09-0069-EF_1.pdf.

Berner, E. S. and T. J. La Lande (2007). “Overview of Clinical Decision Support
Systems”. In: Clinical Decision Support Systems: Theory and Practice. Ed. by
E. S. Berner. New York, NY: Springer New York, pp. 3–22. isbn: 978-0-387-
38319-4. doi: 10.1007/978-0-387-38319-4_1.

Bohm, R., L. von Hehn, T. Herdegen, H. J. Klein, O. Bruhn, H. Petri, and J.
Hocker (2016). “OpenVigil FDA - Inspection of U.S. American Adverse Drug
Events Pharmacovigilance Data and Novel Clinical Applications”. In: PLoS One
11.6, e0157753. issn: 1932-6203 (Electronic) 1932-6203 (Linking). doi: 10.1371/
journal.pone.0157753.

Bundesministerium für Gesundheit (2016). Medikationsplan unterstützt Patienten,
Ärzte und Apotheker. url: http://www.bmg.bund.de/ministerium/meldungen/
2016/medikationsplan.html (visited on 04/10/2016).

Charniak, E. (1997). “Statistical techniques for natural language parsing”. In: AI
magazine 18.4, p. 33.

Clarke, M. A., J. L. Belden, R. J. Koopman, L. M. Steege, J. L. Moore, S. M.
Canfield, and M. S. Kim (2013). “Information needs and information-seeking
behaviour analysis of primary care physicians and nurses: a literature review”.
In: Health Info Libr J 30.3, pp. 178–90. issn: 1471-1842 (Electronic) 1471-1834
(Linking). doi: 10.1111/hir.12036.

Coalition, P. M. (2014). The Case for Personalized Medicine - 4th Edition. Tech. rep.
url: http://www.personalizedmedicinecoalition.org/Userfiles/PMC-
Corporate/file/pmc_the_case_for_personalized_medicine.pdf.

Ebell, M. H., R. Cervero, and E. Joaquin (2011). “Questions asked by physicians as
the basis for continuing education needs assessment”. In: J Contin Educ Health
Prof 31.1, pp. 3–14. issn: 1554-558X (Electronic) 0894-1912 (Linking). doi: 10.
1002/chp.20095.

Falagas, M. E., E. I. Pitsouni, G. A. Malietzis, and G. Pappas (2008). “Comparison
of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weak-
nesses”. In: FASEB J 22.2, pp. 338–42. issn: 1530-6860 (Electronic) 0892-6638
(Linking). doi: 10.1096/fj.07-9492LSF.

100

https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
http://dx.doi.org/10.1007/978-0-387-38319-4_1
http://dx.doi.org/10.1371/journal.pone.0157753
http://dx.doi.org/10.1371/journal.pone.0157753
http://www.bmg.bund.de/ministerium/meldungen/2016/medikationsplan.html
http://www.bmg.bund.de/ministerium/meldungen/2016/medikationsplan.html
http://dx.doi.org/10.1111/hir.12036
http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/pmc_the_case_for_personalized_medicine.pdf
http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/pmc_the_case_for_personalized_medicine.pdf
http://dx.doi.org/10.1002/chp.20095
http://dx.doi.org/10.1002/chp.20095
http://dx.doi.org/10.1096/fj.07-9492LSF

Garret, P. and S. Joshua (2011). EMR vs EHR – What is the Difference? url:
ttps://www.healthit.gov/buzz-blog/electronic-health-and-medical-
records/emr-vs-ehr-difference/ (visited on 05/10/2016).

Huang, K.-C., I. J. Chiang, F. Xiao, C.-C. Liao, C. C.-H. Liu, and J.-M. Wong (2013).
“PICO element detection in medical text without metadata: Are first sentences
enough?” In: Journal of Biomedical Informatics 46.5, pp. 940–946. issn: 1532-
0464. doi: http://dx.doi.org/10.1016/j.jbi.2013.07.009. url: http:
//www.sciencedirect.com/science/article/pii/S153204641300110X.

Humm, B. G. and P. Walsh (2015). “Flexible yet Efficient Management of Electronic
Health Records”. In: 2015 International Conference on Computational Science
and Computational Intelligence (CSCI), pp. 771–775. doi: 10.1109/csci.2015.
84.

Hung, B. T., N. P. Long, P. Hung le, N. T. Luan, N. H. Anh, T. D. Nghi, M. V.
Hieu, N. T. Trang, H. F. Rafidinarivo, N. K. Anh, D. Hawkes, N. T. Huy, and
K. Hirayama (2015). “Research trends in evidence-based medicine: a joinpoint
regression analysis of more than 50 years of publication data”. In: PLoS One
10.4, e0121054. issn: 1932-6203 (Electronic) 1932-6203 (Linking). doi: 10.1371/
journal.pone.0121054.

ISO (2005). Health informatics — Electronic health record — Definition, scope and
context. ISO ISO/TR 20514:2005. Geneva, Switzerland: International Organiza-
tion for Standardization.

Karthigeyan, L., P. Murugesan, and S. P. Natarajan (2014). Clinical Decision Sup-
port Systems & Tools. Tech. rep. Computer Sciences Corporation. url: http:
//assets1.csc.com/innovation/downloads/Clinical_Decision_Support_
Systems.pdf.

Kwag, K. H., M. Gonzalez-Lorenzo, R. Banzi, S. Bonovas, and L. Moja (2016).
“Providing Doctors With High-Quality Information: An Updated Evaluation of
Web-Based Point-of-Care Information Summaries”. In: J Med Internet Res 18.1,
e15. issn: 1438-8871 (Electronic) 1438-8871 (Linking). doi: 10.2196/jmir.5234.

Lyman, J. A., W. F. Cohn, M. Bloomrosen, and D. E. Detmer (2010). “Clinical
decision support: progress and opportunities”. In: J Am Med Inform Assoc 17.5,
pp. 487–92. issn: 1527-974X (Electronic) 1067-5027 (Linking). doi: 10.1136/
jamia.2010.005561.

101

ttps://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/
ttps://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbi.2013.07.009
http://www.sciencedirect.com/science/article/pii/S153204641300110X
http://www.sciencedirect.com/science/article/pii/S153204641300110X
http://dx.doi.org/10.1109/csci.2015.84
http://dx.doi.org/10.1109/csci.2015.84
http://dx.doi.org/10.1371/journal.pone.0121054
http://dx.doi.org/10.1371/journal.pone.0121054
http://assets1.csc.com/innovation/downloads/Clinical_Decision_Support_Systems.pdf
http://assets1.csc.com/innovation/downloads/Clinical_Decision_Support_Systems.pdf
http://assets1.csc.com/innovation/downloads/Clinical_Decision_Support_Systems.pdf
http://dx.doi.org/10.2196/jmir.5234
http://dx.doi.org/10.1136/jamia.2010.005561
http://dx.doi.org/10.1136/jamia.2010.005561

Maggio, L. A., R. M. Steinberg, L. Moorhead, B. O’Brien, and J. Willinsky (2013).
“Access of primary and secondary literature by health personnel in an academic
health center: implications for open access”. In: J Med Libr Assoc 101.3, pp. 205–
12. issn: 1558-9439 (Electronic) 1536-5050 (Linking). doi: 10.3163/1536-5050.
101.3.010.

Maggio, L. A., O. T. Cate, L. L. Moorhead, F. van Stiphout, B. M. Kramer, E. Ter
Braak, K. Posley, D. Irby, and B. C. O’Brien (2014). “Characterizing physicians’
information needs at the point of care”. In: Perspect Med Educ 3.5, pp. 332–42.
issn: 2212-2761 (Print) 2212-2761 (Linking). doi: 10.1007/s40037-014-0118-
z.

Manning, C., P. Raghavan, and H. Schütze (2008). Introduction to Information Re-
trieval. Cambridge University Press, p. 496. isbn: 0521865719, 9780521865715.

Marchant, G. E. and R. A. Lindor (2013). “Personalized medicine and genetic mal-
practice”. In: Genet Med 15.12, pp. 921–2. issn: 1530-0366 (Electronic) 1098-
3600 (Linking). doi: 10.1038/gim.2013.142.

Matthews, B. W. (1975). “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme”. In: Biochim Biophys Acta 405.2, pp. 442–51.
url: https://www.ncbi.nlm.nih.gov/pubmed/1180967.

Mohri, M., A. Rostamizadeh, and A. Talwalkar (2012). Foundations of Machine
Learning. The MIT Press, p. 480. isbn: 026201825X, 9780262018258.

National Cancer Institute (2016). Treatment Option Overview for Melanoma. url:
http : / / www . cancer . gov / types / skin / hp / melanoma - treatment - pdq #
section/_885 (visited on 06/09/2016).

NCBI (2016). PubMed Help [Internet]. url: http://www.ncbi.nlm.nih.gov/
books/NBK3827/ (visited on 24/09/2016).

NLM Tech Bull (2013). PubMed Relevance Sort. url: https://www.nlm.nih.gov/
pubs/techbull/so13/so13_pm_relevance.html (visited on 26/09/2016).

Nyberg, P. (2012). EBMeDS Clinical Decision Support. EBMeDS White Paper.
Tech. rep. Duodecim Medical Publications Ltd. url: http://www.ebmeds.
org/www/EBMeDS%20White%20Paper.pdf.

102

http://dx.doi.org/10.3163/1536-5050.101.3.010
http://dx.doi.org/10.3163/1536-5050.101.3.010
http://dx.doi.org/10.1007/s40037-014-0118-z
http://dx.doi.org/10.1007/s40037-014-0118-z
http://dx.doi.org/10.1038/gim.2013.142
https://www.ncbi.nlm.nih.gov/pubmed/1180967
http://www.cancer.gov/types/skin/hp/melanoma-treatment-pdq#section/_885
http://www.cancer.gov/types/skin/hp/melanoma-treatment-pdq#section/_885
http://www.ncbi.nlm.nih.gov/books/NBK3827/
http://www.ncbi.nlm.nih.gov/books/NBK3827/
https://www.nlm.nih.gov/pubs/techbull/so13/so13_pm_relevance.html
https://www.nlm.nih.gov/pubs/techbull/so13/so13_pm_relevance.html
http://www.ebmeds.org/www/EBMeDS%20White%20Paper.pdf
http://www.ebmeds.org/www/EBMeDS%20White%20Paper.pdf

Obst, O., C. Hofmann, H. Knüttel, and P. Zöller (2013). ““Ask a question, get an
answer, continue your work!” – Survey on the use of UpToDate at the universities
of Freiburg, Leipzig, Münster and Regensburg”. In:GMS Med Bibl Inf 13.3, p. 26.
doi: 10.3205/mbi000290.

Osiński, S. and D. Weiss (2016). Carrot2 - User and Developer Manual for version
3.14.0-SNAPSHOT. url: http : / / download . carrot2 . org / head / manual /
index.html#table.lingo-stc-characteristics (visited on 01/10/2016).

Osiński, S., J. Stefanowski, and D. Weiss (2004). “Lingo: Search results clustering
algorithm based on singular value decomposition”. In: Intelligent information
processing and web mining. Springer, pp. 359–368.

Perez-Rey, D., A. Jimenez-Castellanos, M. Garcia-Remesal, J. Crespo, and V. Maojo
(2012). “CDAPubMed: a browser extension to retrieve EHR-based biomedical
literature”. In: BMC Med Inform Decis Mak 12, p. 29. doi: 10.1186/1472-
6947-12-29. url: https://www.ncbi.nlm.nih.gov/pubmed/22480327.

Peters, L. B., N. Bahr, and O. Bodenreider (2015). “Evaluating drug-drug interaction
information in NDF-RT and DrugBank”. In: J Biomed Semantics 6, p. 19. issn:
2041-1480 (Electronic). doi: 10.1186/s13326-015-0018-0.

Power, J. D. (2008). “Decision Support Systems: A Historical Overview”. In: Hand-
book on Decision Support Systems 1: Basic Themes. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 121–140. isbn: 978-3-540-48713-5. doi: 10.1007/978-3-
540-48713-5_7.

Rahmner, P. B., B. Eiermann, S. Korkmaz, L. L. Gustafsson, M. Gruven, S. Maxwell,
H. G. Eichle, and A. Veg (2012). “Physicians’ reported needs of drug information
at point of care in Sweden”. In: Br J Clin Pharmacol 73.1, pp. 115–25. issn:
1365-2125 (Electronic) 0306-5251 (Linking). doi: 10.1111/j.1365-2125.2011.
04058.x.

Rechenthin, M. D. (2014). “Machine-learning classification techniques for the ana-
lysis and prediction of high-frequency stock direction”. Doctoral dissertation.
University of Iowa. url: http : / / ir . uiowa . edu / cgi / viewcontent . cgi ?
article=5248&context=etd.

103

http://dx.doi.org/10.3205/mbi000290
http://download.carrot2.org/head/manual/index.html#table.lingo-stc-characteristics
http://download.carrot2.org/head/manual/index.html#table.lingo-stc-characteristics
http://dx.doi.org/10.1186/1472-6947-12-29
http://dx.doi.org/10.1186/1472-6947-12-29
https://www.ncbi.nlm.nih.gov/pubmed/22480327
http://dx.doi.org/10.1186/s13326-015-0018-0
http://dx.doi.org/10.1007/978-3-540-48713-5_7
http://dx.doi.org/10.1007/978-3-540-48713-5_7
http://dx.doi.org/10.1111/j.1365-2125.2011.04058.x
http://dx.doi.org/10.1111/j.1365-2125.2011.04058.x
http://ir.uiowa.edu/cgi/viewcontent.cgi?article=5248&context=etd
http://ir.uiowa.edu/cgi/viewcontent.cgi?article=5248&context=etd

Redekop, W. K. and D. Mladsi (2013). “The faces of personalized medicine: a frame-
work for understanding its meaning and scope”. In: Value Health 16.6 Suppl, S4–
9. doi: 10.1016/j.jval.2013.06.005.

Rishel, W., T. J. Handler, and J. Edwards (2005). A Clear Definition of the Elec-
tronic Health Record. Tech. rep. Gartner, Inc. url: https://www.gartner.com/
doc/485998/clear-definition-electronic-health-record.

Sammut, C. and G. I. Webb (2011). Encyclopedia of Machine Learning. Springer
Publishing Company, Incorporated, p. 1058. isbn: 0387307680, 9780387307688.

Sanchez, E. (2014). “Semantically Steered Clinical Decision Support Systems”. Doc-
toral dissertation. University of the Basque Country. url: http://www.ehu.eus/
ccwintco/uploads/7/7c/Eider_Sanchez_Tesis_20140220_Printed.pdf.

ScienceDaily (2016). Terms and Conditions of Use. url: https://www.sciencedaily.
com/terms.htm (visited on 10/09/2016).

Smith, R. (1996). “What clinical information do doctors need?” In: BMJ : British
Medical Journal 313.7064, pp. 1062–1068. issn: 0959-8138 1468-5833. url: http:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2352351/.

Soldaini, L., A. Cohan, A. Yates, N. Goharian, and O. Frieder (2015). “Retrieving
Medical Literature for Clinical Decision Support”. In: Advances in Information
Retrieval: 37th European Conference on IR Research, ECIR 2015, Vienna, Aus-
tria, March 29 - April 2, 2015. Proceedings. Ed. by A. Hanbury, G. Kazai, A.
Rauber, and N. Fuhr. Cham: Springer International Publishing, pp. 538–549.
isbn: 978-3-319-16354-3. doi: 10.1007/978-3-319-16354-3_59.

Sugiyama, K. (2004). “Studies on Improving Retrieval Accuracy in Web Information
Retrieval”. Doctoral dissertation. Nara Institute of Science and Technology. url:
https://www.comp.nus.edu.sg/~sugiyama/papers/SugiyamaFinalDissertation.
pdf.

Wang, L. M., M. Wong, J. M. Lightwood, and C. M. Cheng (2010). “Black box
warning contraindicated comedications: concordance among three major drug
interaction screening programs”. In: Ann Pharmacother 44.1, pp. 28–34. issn:
1542-6270 (Electronic) 1060-0280 (Linking). doi: 10.1345/aph.1M475.

104

http://dx.doi.org/10.1016/j.jval.2013.06.005
https://www.gartner.com/doc/485998/clear-definition-electronic-health-record
https://www.gartner.com/doc/485998/clear-definition-electronic-health-record
http://www.ehu.eus/ccwintco/uploads/7/7c/Eider_Sanchez_Tesis_20140220_Printed.pdf
http://www.ehu.eus/ccwintco/uploads/7/7c/Eider_Sanchez_Tesis_20140220_Printed.pdf
https://www.sciencedaily.com/terms.htm
https://www.sciencedaily.com/terms.htm
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2352351/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2352351/
http://dx.doi.org/10.1007/978-3-319-16354-3_59
https://www.comp.nus.edu.sg/~sugiyama/papers/SugiyamaFinalDissertation.pdf
https://www.comp.nus.edu.sg/~sugiyama/papers/SugiyamaFinalDissertation.pdf
http://dx.doi.org/10.1345/aph.1M475

Webb, G. I. (2010). “Naïve Bayes”. In: Encyclopedia of Machine Learning. Ed. by
C. Sammut and G. I. Webb. Boston, MA: Springer US, pp. 713–714. isbn: 978-
0-387-30164-8. doi: 10.1007/978-0-387-30164-8_576.

Wright, A. and D. F. Sittig (2008). “A four-phase model of the evolution of clinical
decision support architectures”. In: Int J Med Inform 77.10, pp. 641–9. doi:
10.1016/j.ijmedinf.2008.01.004.

Zhang, X. (2010). “Support Vector Machines”. In: Encyclopedia of Machine Learn-
ing. Ed. by C. Sammut and G. I. Webb. Boston, MA: Springer US, pp. 941–
946. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_804. url:
http://dx.doi.org/10.1007/978-0-387-30164-8_804.

105

http://dx.doi.org/10.1007/978-0-387-30164-8_576
http://dx.doi.org/10.1016/j.ijmedinf.2008.01.004
http://dx.doi.org/10.1007/978-0-387-30164-8_804
http://dx.doi.org/10.1007/978-0-387-30164-8_804

	Introduction
	Motivation
	Project Surrounding
	Outline

	Requirements
	Background
	Personalised Medicine
	Electronic Health Records
	Clinical Decision Support Systems
	Machine Learning
	Supervised Classification
	Unsupervised Clustering
	Algorithms
	Performance Metrics

	Natural Language Processing
	Information Retrieval
	Retrieval Models
	Evaluation Metrics

	Information Architecture
	Information Demand
	User Interaction Model
	Literature Service
	Evidence-Based Medical Recommendations
	Drug Information Service
	Clinical Trials Locator Service
	Medical News Service

	Information Sources
	Literature Service Sources
	Evidence-based Medical Recommendations
	Drug Information Sources
	Clinical Trials
	Medical News

	Software Architecture
	System Overview
	Literature Service
	Overview
	Data Source Selection
	EHR Mapping
	Query Generation Engine
	Literature Retrieval
	Teaser Text Generation
	Clustering
	Result Ranking
	User Feedback
	User Interface

	Drug Interaction Service
	Data Source Selection
	Drug Interaction Search
	Drug Interaction Interface

	Decision Support Controller
	GUI Architecture

	Implementation
	Literature Service
	Query Generation Using Rules
	Predicting Search Terms Using Machine Learning
	Literature Retrieval from PubMed
	Teaser Text Generation Using Weka
	Literature Clustering with Carrot2
	Saving Feedback
	Literature Service View Component

	Drug Interaction Service
	Drug Interaction Search
	Interaction Interface

	Evaluation
	Usability Tests and Initial Survey
	Response Time
	Extensibility and Maintainability
	Literature Service Document Retrieval Evaluation

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work
	Additional CDSS Services
	Standards and Service Architecture
	Extending the Literature Service
	Drug Interaction Data Source

	Appendices
	Literature Service Data Sources
	EBM Recommendation Sources
	Drug Information Data Sources
	Temporary File Wrapper
	Evaluation Survey

